Imperas

An introduction to RISC-V
Verification with RVVI

The RISC-V Verification Interface

Aimee Sutton


mailto:aimees@imperas.com

Agenda im@eras

* RISC-V verification challenges
* Standardization: RVVI
* Applications of RVVI




Agenda im@eras

* RISC-V verification challenges
 Standardization: RVVI
* Applications of RVVI




Challenges in RISC-V |M@eras

Processor DV

Feature selection and design choices require serious consideration
Must consider verification impact

Current SoC cost is 50% for HW DV (with CPUs bought in as proven IP)

Developing own CPU adds incremental schedule, resource, quality challenges

Processor DV is a new challenge for many teams
Traditionally, SoC developers licensed in pre-verified processor IP
Now, every RISC-V processor developer is an architecture licensee

Existing DV methodologies don’t completely address the challenge

As of 2021, no commercial products available to support DV of
pProcessors

© 2022 Imperas Software Ltd.



Agenda im[@eras

* RISC-V verification challenges
* Standardization: RVVI
* Applications of RVVI




I
Standardization Innperas

* Good for IP users and IP vendors

* For users:
* Supports best practices
* Reuse and portability
* Get up and running faster

* For vendors:
* Less configurability, better quality
* Ease of customer support

* UVM standard is a good example



Standardization: RVVI Innperas

RVVI = RISC-V Verification Interface Testbench
https://github.com/riscv-verification/RVVI _
Work has evolved over 2 years " S
: . imulati =
Imperas, EM Micro, SiLabs, OpenHW 'rc':ﬁ,frc',fn
RISC-V

Standardize communication between
testbench and RISC-V VIP

Three parts:

RVVI-TRACE: signal level interface to
RISC-V VIP

RVVI-API: function level interface to
RISC-V VIP RVVI-VVP

RVVI-VVP: virtual verification peripherals

Verification
IP

(NN]
Q
<<
<
T
>
=
&=

© 2022 Imperas Software Ltd.


https://github.com/riscv-verification/RVVI

I
RVVI-TRACE Innperas

* Defines information to be extracted by
tracer

 SystemVerilog interface

* Includes functions to handle — :’:S":[ ]
asynchronous events RISC-V i - .
- E.g. interrupts, debug req e : < RISCV
(DUT) i = net_push() = Verification IP
net_pop()
* https://github.com/riscv- B

verification/RVVI/tree/main/RVVI-
TRACE



https://github.com/riscv-verification/RVVI/tree/main/RVVI-TRACE
https://github.com/riscv-verification/RVVI/tree/main/RVVI-TRACE
https://github.com/riscv-verification/RVVI/tree/main/RVVI-TRACE

I
mperas

* Standard functions that RISC-V
processor VIPs need to implement

RVVI-AP]

* Supports a step-and-compare
methodology

* C and SystemVerilog versions
available

* https://github.com/riscv-
verification/RVVI/blob/main/include
/host/rvvi/rvvi-api.h

© 2022 Imperas Software Ltd.



I
RVVI-VVP Innperas

* VVP = Virtual Verification Peripheral

* Memory-mapped testbench
components

* E.g. Virtual printer/UART, signature file
writer, status interrupt timer control,

debug control, instruction memory stall _
control Driver rvviVVPwrite()

rviVVPread()

Virtual
peripheral
model

* Allows better co-ordination of RVVI-VVP
stimulus on peripheral interfaces
with the program running on the
core

* Needed for RISC-V compliance tests
> WIP

Page 10 © 2022 Imperas Software Ltd.

a
<
a
>
i
>
=
&

reg reg




Why RVVI? lnnperas

You have to use some interfaces

No need to re-invent on your own —they do not need to be proprietary

RVVI (and its predecessor) have already been flushed out
in use with several tools, users, cores

There is no downside to adoption
RVVIis an open standard available on GitHub

RVVI helps you understand what you need to develop (in e.g. your tracer)

RVVI supports RISC-V processor DV best practices
step-and-compare, asynchronous events



Agenda im@eras

* RISC-V verification challenges
e Standardization: RVVI
* Applications of RVVI

Page 13 © 2022 Imperas Software Ltd.



Testbench for Advanced RISC-V
Design Verification

jnn

oeras

Testbench
e VIP driver RISC-V Verification IP
| data Provides tracer data to (e.g. ImperasDV)
RISC-V the RISC-V VIP using _
- the RVVI API o RISC-V
Core § ;F Reference
= Model
RTL = 5 »/ Functions to configure, i ode
(DUT) < control, and query the i .
— Asynchronous —* = > verification IP Configuration
— netevents — > >
= ...
o Synchronization
A A
RVVI-TRACE client such Predictive engine
L 4 v as file logger
RVVI Virtual RVVI Virtual RVVI-TRACE client such Scoreboard
Peripheral Peripheral RVVI-VVP - as (SystemVerilog)
Functional Coverage
N AN AN
Y ' Y
Verilog Verilog or C/C++ C/C++

© 2022 Imperas Software Ltd.




Example usage of RVVI for RISC-V

CPU DV (with ImperasC

Testbench

Simulation Functional
control coverage

RVVI
Virtual
Peripheral

Page 15

Ll
@]
<
o
i
>
=
&

trace2cov

trace2api

trace2log

V)

RVVI-API

Imperas

RISC-V
Reference
Model

Configuration
Synchronization
Predictive engine

Scoreboard

Pass/Fail
determination

© 2022 Imperas Software Ltd.

I
Imperas

5 components of RISC-V CPU DV
* DUT subsystem with ‘tracer’

* Tests: (random) instruction test
generator and directed tests

* Functional coverage
measurement

* Test bench / harness
* ImperasDV subsystem

* RVVI-TRACE i/f to core tracer
* RVVI-API i/f to verification IP

* RVVI-VVP virtual verification
peripherals



Summary lnnperas

RISC-V is dramatically moving the processor DV task from the
traditional mainstream IP providers to all SoC developers

Processor DV methodology has been evolved by Imperas, together
with customers and partners => RVVI

Open standards like RVVI are essential to enabling efficient
methodologies and advancing the RISC-V ecosystem

RVVI enables verification IP reuse and engineering efficiency

Verification IP with RVVI = best practices, open standards, verification
productivity gain



—
mperas




