N
Ilnperas

Advanced RISC-V verification
methodology projects

15 March 2023

embeddedworidazoas

CI Exhibition&Conference
...it's a smarter world

—
Imperas

Agenda

* The evolution of OpenHW CORE-V-VERIF

* Defining open standards for verification with RISC-V Verification Interface
(RVVI)

* Asynchronous events
* Functional coverage
* Future direction

© 2023 Imperas Software Ltd. @ =mbeddedwaridzo=s

OpenHW group nnperas

A not-for-profit, global organization registered in Canada and Europe.
Almost 100 Members and Partners from all regions of the world.

Members (corporate & academic) collaborate in the development of open-
source cores, related IP and SW.

Primary focus is the CORE-V Family of open-source RISC-V processors.
Use of industrial methodology, verification and tooling to create quality IP

© 2023 Imperas Software Ltd. C‘ EEthbECdEIEdWOﬂdEDEB

What is CORE-V-VERIF? nnperas

A UVM environment for RISC-V processor verification

Open source and available on GitHub:
https://github.com/openhwgroup/core-v-verif

Developed by the OpenHW Group’s Verification Task Group (VTG)
Contributions from Silicon Labs, Imperas, EM Microelectronic
On-going work by Silicon Labs, Imperas, Thales, Dolphin, NXP, Intrinsix

Created in 2019; evolving and improving ever since

In use at many academic and commercial organizations today

© 2023 Imperas Software Ltd. C‘ EmbEddEdworldaoas

Ehbt &C nfer
er wi

https://github.com/openhwgroup/core-v-verif

I
First generation CORE-V-VERIF lNpe@ras

Design Under Test
Memory —
test-program.S Mapped _—
Peripherals
m CV32E40P ‘
RTL
: 4 4 Step
| Functional Debug Interrupt &
Agent nt
Coverage A Compare Reference Model
--l-""—-_—_—-_

Inperas
Instruction Set Simulator

SystemVerilog Testhench with UVYM Components

© 2023 Imperas Software Ltd. @ =mbeddedwaridzo=s

Second generation CORE-V-VERIF [MNDE€ras

em oy

Memory
Agent(s)

|

Crg || Cig |
Debug Interrupt [Fcov Cfg
~ Agent ~ Agent
ISACOV
Agent
SVA g

/

Y

L}

CV32E4*

A

Imperas
Instruction Set Simulator

SystemVerilog UVM Environment

Y

RTL

PN
RSN /\
'i====i.'l'|-érl:.||"r
a1 N E o
CORE-V ‘} E . S&C
o = .

© 2023 Imperas Software Ltd.

@ embeddedworldaoas

E hbto &Co fer

RISC-V Verification Interface
R Imperas

Common components should

https://github.com/riscv-verification/RVVI

have standard interfaces Testbench

Standardize communication 3

between RTL, testbench, and 2

RISC-V VIP e
RVVI-TRACE: signal level interface Verification
(tracer) between RTL and - IP

testbench

RVVI-API: function level interface
between testbench and RISC-V VIP

RVVI-VVP: virtual verification
peripherals

L
(@]
<
o
T
>
>
2

© 2023 Imperas Software Ltd. @ EErTEECdEIEdWOI'IdEDEB

https://github.com/riscv-verification/RVVI

RVVI-TRACE |m[@eras

https://github.com/riscv-verification/RVVI/tree/main/RVVI-TRACE

Generically defines information
to be extracted by tracer

SystemVerilog interface

Includes functions to handle _ valid :
asynchronous events RISC-V - monl.] I
. Core § = RISC-V
implements a queue to store RTL g S| Y
multiple net changes during (DUT) | _netpush() [Z| | TR
a single interval | _net_pop() ,

© 2023 Imperas Software Ltd. <‘ gmsgggggworldaoaa

https://github.com/riscv-verification/RVVI/tree/main/RVVI-TRACE

I
Innperas

RVVI-API

https://github.com/riscv-verification/RVVI/blob/main/include/host/rvvi/rvvi-api.h

* Standard functions that RISC-V
processor VIPs need to
implement

* Supports a co-simulation,
continuous comparison
methodology

* C and SystemVerilog versions
available

* Example: functions to marks
registers/fields as “volatile”

https://github.com/riscv-verification/RVVI/blob/main/include/host/rvvi/rvvi-api.h

Asynchronous events

RISC-V Core pins

—
Imperas

clk [\

RVVI-TRACE iff

vaid [T\)
retire —/'—\

trap

Interrupt taken, but which one?

PC X ox1000

0x1004

MEPC

MIP

0x00000000 0x00000000/0x00000017

MCAUSE

0x00000000 0x00000000/0x80000017

Z

Z 0x1004
X
X

IRO

Page 10

= MSTATUS.MIE && ((MIE & MIP) != 0x0);

@ embeddedworld=zo=s

Exhibition&Conference
.it's a smarter world

© 2023 Imperas Software Ltd.

__
Imperas

Third generation CORE-V-VERIF

-
Debug Interrupt [Fcov Cfg]
Agent | Agent
ISACOV
Agent
emGg |- .y (SVAI
s 7
L.e‘lem::(ry; 17 coreVv- _E JORWIE)
gent(s . F _ SVIF |
L Cvezs RVVI Driver
/ - RWI
\ API /)
= &
ihnPeras
ImperasDV VIP
SystemVerilog UVM Environment

Page 11 © 2023 Imperas Software Ltd. @ EerTEEC??EC!WO'-IdEOEB

Functional Coverage |m[p)e|'as

Prove all functionality of the design has been tested

Eg all registers used, error conditions tested
Far more comprehensive than just compliance testing
Design intent has to be well specified to allow complete verification against it

Complexity relates to design choices, configuration options
Eg which ISA extensions are being used

Hard to write by hand
~1000 instructions in the RISC-V ISA (RV64GC, not including privilege modes etc)
Maybe 10-40 lines of SystemVerilog for each instruction...

That is 10,000-40,000 lines of SystemVerilog code to be written... (and be correct and
working...)

© 2023 Imperas Software Ltd. C‘ EerTEECdEIEdWOHdEDEB

—
Imperas

ISA complexity

* RV64ISA: * Example from RV32I:
» Integer: 56 * Instructions: 37
» Maths: 13 * Covergroups: 37
» Compressed: 30 * Coverpoints total: 438
o FP-Single: 30
Extension Instruction Covergroup Coverpoint Coverpoint Description

o FP-Double: 32
o \ector: 356

RV32| addi addi_cg cp_asm_count Number of times instruction

o Bitmanip: 47 is executed
o Krypto-scalar: 85 RD (GPR) regi
d gister
o P-DSP: 318 P! assignment
N 967 inStru CtiOhS cp_rd_sign RD (GPR) sign of value

https://github.com/riscv-verification/riscvISACOV/blob/20221117.0/documentation/RV32| coverage.md

Page 13 © 2023 Imperas Software Ltd. <‘ gmgsggggworldaoea

https://github.com/riscv-verification/riscvISACOV/blob/20221117.0/documentation/RV32I_coverage.md

—
Imperas

Limitations on reuse

* Interrupts

* Debug

* Pipeline

* Custom instructions

* Custom CSRs
* All of these are design specific so hard to make coverage generic

Page 14 © 2023 Imperas Software Ltd. C‘, EEthbECd?EdWDrIdEDEB

riscviISACOV im[@eras

https://github.com/riscv-verification/riscvISACOV

RISC-V Verification IP

RISC-V
Reference
Model

VIP driver

Data

Provides tracer data to
the RISC-V VIP using
the RVVI API

Configuration,
Synchronization,
Scoreboard,
Pass/Fail
determination

B¢
= o L
Tracer

— Nets
— events

RVVI allows use of Functional Coverage with any RISC-V core

Page 15 © 2023 Imperas Software Ltd. @ gﬁtgscgngrzgworldaoas

...it's a smarter world

https://github.com/riscv-verification/riscvISACOV

—
Imperas

* Advanced RISC-V Verification Methodologies (ARVM) projects:

* https://github.com/openhwgroup/programs/tree/master/TGs/verification-task-
group/projects

* Enhanced functional coverage for Privilege specification, MMU
* Enhanced functional coverage for hazards, microarchitectural features

Future Work

Page 16 © 2023 Imperas Software Ltd. C‘, Emtbscd9ec!worldaoaa

https://github.com/openhwgroup/programs/tree/master/TGs/verification-task-group/projects
https://github.com/openhwgroup/programs/tree/master/TGs/verification-task-group/projects

Conclusions Inperas

CPU DV for RISC-V is a new problem for many SoC designers

An open, standardised approach to verification improves re-use and enables
faster integration of third party verification IP
There’s no downside to adopting RVVI for RISC-V DV

Functional coverage is essential to prove the design matches intent

© 2023 Imperas Software Ltd. C‘ EEthbECdEIEdWOﬂdEDEB

__
Imperas

Thank you!

Jon Taylor - jont@imperas.com
Visit our booth: Hall: 4A, Booth: 4A-620

Page 18 © 2023 Imperas Software Ltd. (‘ ggﬂg?ggﬁgworldaoea

mailto:jont@imperas.com

	Slide 1: Advanced RISC-V verification methodology projects
	Slide 2: Agenda
	Slide 3: OpenHW group
	Slide 4: What is CORE-V-VERIF?
	Slide 5
	Slide 6: Second generation CORE-V-VERIF
	Slide 7: RISC-V Verification Interface (RVVI)
	Slide 8: RVVI-TRACE
	Slide 9: RVVI-API
	Slide 10: Asynchronous events
	Slide 11: Third generation CORE-V-VERIF
	Slide 12: Functional Coverage
	Slide 13: ISA complexity
	Slide 14: Limitations on reuse
	Slide 15: riscvISACOV
	Slide 16: Future Work
	Slide 17: Conclusions
	Slide 18: Thank you!

