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Agenda

* The evolution of OpenHW CORE-V-VERIF

* Defining open standards for verification with RISC-V Verification Interface
(RVVI)

* Asynchronous events
* Functional coverage
* Future direction
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OpenHW group nnperas

A not-for-profit, global organization registered in Canada and Europe.
Almost 100 Members and Partners from all regions of the world.

Members (corporate & academic) collaborate in the development of open-
source cores, related IP and SW.

Primary focus is the CORE-V Family of open-source RISC-V processors.
Use of industrial methodology, verification and tooling to create quality IP
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What is CORE-V-VERIF? nnperas

A UVM environment for RISC-V processor verification

Open source and available on GitHub:
https://github.com/openhwgroup/core-v-verif

Developed by the OpenHW Group’s Verification Task Group (VTG)
Contributions from Silicon Labs, Imperas, EM Microelectronic
On-going work by Silicon Labs, Imperas, Thales, Dolphin, NXP, Intrinsix

Created in 2019; evolving and improving ever since

In use at many academic and commercial organizations today
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https://github.com/openhwgroup/core-v-verif

I
First generation CORE-V-VERIF lNpe@ras
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Second generation CORE-V-VERIF [MNDE€ras
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RISC-V Verification Interface
R Imperas

Common components should

https://github.com/riscv-verification/RVVI

have standard interfaces Testbench

Standardize communication 3

between RTL, testbench, and 2

RISC-V VIP e
RVVI-TRACE: signal level interface Verification
(tracer) between RTL and - IP

testbench

RVVI-API: function level interface
between testbench and RISC-V VIP

RVVI-VVP: virtual verification
peripherals
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https://github.com/riscv-verification/RVVI

RVVI-TRACE |m[@eras

https://github.com/riscv-verification/RVVI/tree/main/RVVI-TRACE

Generically defines information
to be extracted by tracer

SystemVerilog interface

Includes functions to handle _ valid :
asynchronous events RISC-V - monl.] I
. Core § = RISC-V
implements a queue to store RTL g S| Y
multiple net changes during (DUT) | _netpush() [Z| | TR
a single interval | _net_pop() ,
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https://github.com/riscv-verification/RVVI/tree/main/RVVI-TRACE

I
Innperas

RVVI-API

https://github.com/riscv-verification/RVVI/blob/main/include/host/rvvi/rvvi-api.h

* Standard functions that RISC-V
processor VIPs need to
implement

* Supports a co-simulation,
continuous comparison
methodology

* C and SystemVerilog versions
available

* Example: functions to marks
registers/fields as “volatile”


https://github.com/riscv-verification/RVVI/blob/main/include/host/rvvi/rvvi-api.h

Asynchronous events

RISC-V Core pins
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Third generation CORE-V-VERIF
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Functional Coverage |m[p)e|'as

Prove all functionality of the design has been tested

Eg all registers used, error conditions tested
Far more comprehensive than just compliance testing
Design intent has to be well specified to allow complete verification against it

Complexity relates to design choices, configuration options
Eg which ISA extensions are being used

Hard to write by hand
~1000 instructions in the RISC-V ISA (RV64GC, not including privilege modes etc)
Maybe 10-40 lines of SystemVerilog for each instruction...

That is 10,000-40,000 lines of SystemVerilog code to be written... (and be correct and
working...)
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ISA complexity

* RV64ISA: * Example from RV32I:
» Integer: 56 * Instructions: 37
» Maths: 13 * Covergroups: 37
» Compressed: 30 * Coverpoints total: 438
o FP-Single: 30
Extension Instruction Covergroup Coverpoint Coverpoint Description

o FP-Double: 32
o \ector: 356

RV32| addi addi_cg cp_asm_count Number of times instruction

o Bitmanip: 47 is executed
o Krypto-scalar: 85 RD (GPR) regi
d gister
o P-DSP: 318 P! assignment
N 967 inStru CtiOhS cp_rd_sign RD (GPR) sign of value

https://github.com/riscv-verification/riscvISACOV/blob/20221117.0/documentation/RV32| coverage.md
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https://github.com/riscv-verification/riscvISACOV/blob/20221117.0/documentation/RV32I_coverage.md
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Limitations on reuse

* Interrupts

* Debug

* Pipeline

* Custom instructions

* Custom CSRs
* All of these are design specific so hard to make coverage generic
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riscviISACOV im[@eras

https://github.com/riscv-verification/riscvISACOV

RISC-V Verification IP

RISC-V
Reference
Model

VIP driver

Data

Provides tracer data to
the RISC-V VIP using
the RVVI API

Configuration,
Synchronization,
Scoreboard,
Pass/Fail
determination
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RVVI allows use of Functional Coverage with any RISC-V core
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https://github.com/riscv-verification/riscvISACOV
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* Advanced RISC-V Verification Methodologies (ARVM) projects:

* https://github.com/openhwgroup/programs/tree/master/TGs/verification-task-
group/projects

* Enhanced functional coverage for Privilege specification, MMU
* Enhanced functional coverage for hazards, microarchitectural features

Future Work
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Conclusions Inperas

CPU DV for RISC-V is a new problem for many SoC designers

An open, standardised approach to verification improves re-use and enables
faster integration of third party verification IP
There’s no downside to adopting RVVI for RISC-V DV

Functional coverage is essential to prove the design matches intent
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Thank you!

Jon Taylor - jont@imperas.com
Visit our booth: Hall: 4A, Booth: 4A-620
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