
Advanced RISC-V verification 
methodology projects

15 March 2023



Agenda

• The evolution of OpenHW CORE-V-VERIF

• Defining open standards for verification with RISC-V Verification Interface 
(RVVI)

• Asynchronous events

• Functional coverage

• Future direction

© 2023 Imperas Software Ltd.Page 2



OpenHW group

• A not-for-profit, global organization registered in Canada and Europe.
• Almost 100 Members and Partners from all regions of the world.

• Members (corporate & academic) collaborate in the development of open-
source cores, related IP and SW.

• Primary focus is the CORE-V Family of open-source RISC-V processors.
• Use of industrial methodology, verification and tooling to create quality IP

© 2023 Imperas Software Ltd.Page 3



What is CORE-V-VERIF?

• A UVM environment for RISC-V processor verification

• Open source and available on GitHub:
• https://github.com/openhwgroup/core-v-verif

• Developed by the OpenHW Group’s Verification Task Group (VTG)
• Contributions from Silicon Labs, Imperas, EM Microelectronic

• On-going work by Silicon Labs, Imperas, Thales, Dolphin, NXP, Intrinsix

• Created in 2019; evolving and improving ever since

• In use at many academic and commercial organizations today

© 2023 Imperas Software Ltd.Page 4

https://github.com/openhwgroup/core-v-verif


First generation CORE-V-VERIF

Page 5 © 2023 Imperas Software Ltd.



Second generation CORE-V-VERIF

Page 6 © 2023 Imperas Software Ltd.



RISC-V Verification Interface 
(RVVI)

• Common components should 
have standard interfaces

• Standardize communication 
between RTL, testbench, and 
RISC-V VIP
• RVVI-TRACE: signal level interface 

(tracer) between RTL and 
testbench

• RVVI-API: function level interface 
between testbench and RISC-V VIP

• RVVI-VVP: virtual verification 
peripherals

© 2023 Imperas Software Ltd.Page 7

RISC-V
Core
RTL

(DUT)

Simulation 
control

RISC-V
Verification 

IP

Testbench

R
V

V
I-

TR
A

C
E

R
V

V
I-

A
P

I

Tr
ac

er

RVVI-VVP

https://github.com/riscv-verification/RVVI

https://github.com/riscv-verification/RVVI


RVVI-TRACE

• Generically defines information 
to be extracted by tracer

• SystemVerilog interface

• Includes functions to handle 
asynchronous events
• implements a queue to store 

multiple net changes during
a single interval

© 2023 Imperas Software Ltd.Page 8

https://github.com/riscv-verification/RVVI/tree/main/RVVI-TRACE

RISC-V
Core
RTL

(DUT)

RISC-V
Verification IPTr

ac
er

R
V

V
I-

TR
A

C
E

valid
insn[..]

net_push()

net_pop()

. . .

https://github.com/riscv-verification/RVVI/tree/main/RVVI-TRACE


RVVI-API

• Standard functions that RISC-V 
processor VIPs need to 
implement

• Supports a co-simulation, 
continuous comparison 
methodology

• C and SystemVerilog versions 
available

• Example: functions to marks 
registers/fields as “volatile”

7-Feb-23© 2023 Imperas Software Ltd.Page 9

https://github.com/riscv-verification/RVVI/blob/main/include/host/rvvi/rvvi-api.h

rvviRefEventStep()

rvviRefGprsCompare()

rvviRefPcCompare()

rvviRefCsrsCompare()

rvviRefGprGet()

rvviRefPcGet()

rvviRefInsBinGet()

rvviRefCsrGet()

R
V

V
I-

A
P

I

https://github.com/riscv-verification/RVVI/blob/main/include/host/rvvi/rvvi-api.h


Asynchronous events

© 2023 Imperas Software Ltd.Page 10

IRQ = MSTATUS.MIE && ((MIE & MIP) != 0x0); 



Third generation CORE-V-VERIF

© 2023 Imperas Software Ltd.Page 11



Functional Coverage

• Prove all functionality of the design has been tested
• Eg all registers used, error conditions tested
• Far more comprehensive than just compliance testing
• Design intent has to be well specified to allow complete verification against it

• Complexity relates to design choices, configuration options
• Eg which ISA extensions are being used

• Hard to write by hand
• ~1000 instructions in the RISC-V ISA (RV64GC, not including privilege modes etc)
• Maybe 10-40 lines of SystemVerilog for each instruction…
• That is 10,000-40,000 lines of SystemVerilog code to be written… (and be correct and 

working…)

© 2023 Imperas Software Ltd.Page 12



ISA complexity

• RV64ISA:
• Integer: 56

• Maths: 13

• Compressed: 30

• FP-Single: 30

• FP-Double: 32

• Vector: 356

• Bitmanip: 47

• Krypto-scalar: 85

• P-DSP: 318

• 967 instructions

• Example from RV32I:
• Instructions: 37
• Covergroups: 37
• Coverpoints total: 438

© 2023 Imperas Software Ltd.Page 13

Extension Instruction Covergroup Coverpoint Coverpoint Description

RV32I addi addi_cg cp_asm_count
Number of times instruction 
is executed

cp_rd
RD (GPR) register 
assignment

cp_rd_sign RD (GPR) sign of value

https://github.com/riscv-verification/riscvISACOV/blob/20221117.0/documentation/RV32I_coverage.md

https://github.com/riscv-verification/riscvISACOV/blob/20221117.0/documentation/RV32I_coverage.md


Limitations on reuse

• Interrupts

• Debug

• Pipeline

• Custom instructions

• Custom CSRs

• All of these are design specific so hard to make coverage generic

© 2023 Imperas Software Ltd.Page 14



riscvISACOV

© 2023 Imperas Software Ltd.Page 15

https://github.com/riscv-verification/riscvISACOV

https://github.com/riscv-verification/riscvISACOV


Future Work

• Advanced RISC-V Verification Methodologies (ARVM) projects:
• https://github.com/openhwgroup/programs/tree/master/TGs/verification-task-

group/projects

• Enhanced functional coverage for Privilege specification, MMU 

• Enhanced functional coverage for hazards, microarchitectural features

© 2023 Imperas Software Ltd.Page 16

https://github.com/openhwgroup/programs/tree/master/TGs/verification-task-group/projects
https://github.com/openhwgroup/programs/tree/master/TGs/verification-task-group/projects


Conclusions

• CPU DV for RISC-V is a new problem for many SoC designers

• An open, standardised approach to verification improves re-use and enables 
faster integration of third party verification IP
• There’s no downside to adopting RVVI for RISC-V DV

• Functional coverage is essential to prove the design matches intent

© 2023 Imperas Software Ltd.Page 17



Thank you!

Jon Taylor - jont@imperas.com

Visit our booth: Hall: 4A, Booth: 4A-620

© 2023 Imperas Software Ltd.Page 18

mailto:jont@imperas.com

	Slide 1: Advanced RISC-V verification methodology projects
	Slide 2: Agenda
	Slide 3: OpenHW group
	Slide 4: What is CORE-V-VERIF?
	Slide 5
	Slide 6: Second generation CORE-V-VERIF
	Slide 7: RISC-V Verification Interface (RVVI)
	Slide 8: RVVI-TRACE
	Slide 9: RVVI-API
	Slide 10: Asynchronous events
	Slide 11: Third generation CORE-V-VERIF
	Slide 12: Functional Coverage
	Slide 13: ISA complexity
	Slide 14: Limitations on reuse
	Slide 15: riscvISACOV
	Slide 16: Future Work
	Slide 17: Conclusions
	Slide 18: Thank you! 

