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I. ABSTRACT 

The open standard of RISC-V offers developers new freedoms 

to explore new design flexibilities and enable innovations with 

optimized processors. As a design moves from concept to 

implementation new resources are appearing to help with 

standards for testbenches, verification IP reuse and coverage 

analysis. RISC-V offers every SoC team the possibility to 

design an optimized processor, but this also implies the SoC 

design verification teams will need to address the challenge and 

complexity of processor verification. 

This paper outlines open standards and methodologies that 

assist in both the efficiency and support for the growing 

community of RISC-V adopters. 

Key aspects include: 

• Test Bench integration standards to support 

SystemVerilog flows based on traditional SoC 

techniques extended for RISC-V processor design 

verification. 

• Coverage methodologies that support the 

complexities of process design with asynchronous 

events including interrupts and debug operations, 

plus hardware configurations including Out-Of-Order 

pipelines, vector extensions and custom instructions. 

Based on examples from several popular open-source cores this 

paper will provide guidelines that can help both open-source 

and commercial projects address the RISC-V functional 

verification challenge. 
 

I. INTRODUCTION 

The popularity of the RISC-V instruction set architecture (ISA) 

for microprocessors is growing, and with it is the need for, and 

interest in, processor-specific design verification techniques. 

Until recently, CPU IP was generally provided from a small set 

of companies. As RISC-V has grown in popularity, many more 

engineers are getting involved in processor design. Even prior 

to this, the cost of SoC verification was half the total cost of the 

design while a recent report[1] shows that even design 

engineers spend half their time on verification. Introducing 

custom or customized CPUs introduces additional verification 

challenges. Industry standard techniques such as constrained-

random generation and functional coverage can help, but it is 

inefficient for every designer to create their own methodology 

and integration of verification IP components. 

 

OpenHW group was created to develop open source IP, 

designed and verified to industry standards and ready for 

industrial deployment, collectively known as the CORE-V 

family [2]. This includes verification of their cores, and the 

organization includes a Verification Task group with a focus on 

ensuring that the CORE-V family of open-source RISC-V 

processor cores is verified to industry standards, so that anyone 

who adopts these cores can feel confident that they are ready 

for silicon. The verification environment used to verify the 

CORE-V cores is known as CORE-V-VERIF [3] and it too is 

an open-source artifact, available on GitHub.  

 

The first and second generations of OpenHW Group’s CORE-

V-VERIF utilized a C Reference Model (RM) of the processor 

embedded in a UVM testbench. The reference model and the 

Device Under Test (DUT) were run in lock-step, each executing 

the same program, while the testbench compared the internal 

state of the two at the retirement of every instruction. This 

became known as the step-and-compare methodology. Used 

together with a random instruction stream generator and UVM 

agents providing peripheral stimulus (such as interrupts), it was 

an effective method of achieving verification closure for the 

CV32E40P RISC-V processor RTL.  

 

Although successful, the time and human effort required to 

develop the first and second generation CORE-V-VERIF 

environments and achieve verification closure was high. The 

OpenHW Group was developing ambitious plans to achieve the 

same level of verification for at least five additional RISC-V 

cores, and it was clear that a more efficient methodology was 

required. 

 

The experience with these verification projects led to the 

observation that some components should be common to all 

RISC-V processor testbenches, and common components 

should conform to standard interfaces. This led to the 

development of RVVI: the RISC-V Verification Interface. In 
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turn, the availability of standard interfaces made it possible to 

develop verification IP that implements these common 

components. These innovations have contributed to the third 

generation of the CORE-V-VERIF environment which is in use 

today with multiple RISC-V core developments. 

 

Building on these standards is also a need for functional 

coverage of the design. This coverage is a way of measuring 

how much of the design has been comprehensively tested (as 

opposed to compliance testing which is far from exhaustive) . 

Imperas has developed functional coverage for much of the 

RISC-V ISA, including many standard extensions. With RISC-

V supporting customisation, again a flow is needed to allow 

designs with custom instructions to add their own functional 

coverage points. 

 

Functional coverage for the ISA itself is not enough to fully 

validate a design, since there are architectural behaviours 

beyond just instruction execution. Events such as interrupts, 

aborts or debug requests can interrupt the program flow 

asynchronously and this often exposes bugs. Thorough 

verification requires a process for testing these. 

 

The following sections will provide greater detail into the 

evolution of the CORE-V-VERIF environment and RISC-V 

verification methodology. The first and second generation 

CORE-V-VERIF environments will be described, along with 

the highlights and shortcomings of each. Next the RISC-V 

Verification Interface (RVVI) will be described in detail, with 

an explanation of how it starts to address the shortcomings 

mentioned previously. The evolution continues with the 

introduction of verification IP to promote reuse, improve 

checking, and gain further efficiency. This lead to the present 

day third generation CORE-V-VERIF environment which will 

be shown to demonstrate the successful application of these 

techniques and provide context for future work. We then 

discussion the importance of functional coverage and the 

riscvISACOV project developing reusable functional coverage 

for RISC-V. 

II. THE FIRST GENERATION CORE-V-VERIF 

ENVIRONMENT 

 

The OpenHW Group develops open-source design and 

verification IP centered on the CORE-V family of RISC-V 

cores and related IP. The verification environments for the 

CORE-V cores are maintained as open-source artifacts in the 

CORE-V-VERIF GitHub repository[3]. The first generation 

CORE-V-VERIF environment is illustrated in Figure 1 below. 

 

Figure 1: First Generation CORE-V-VERIF environment 

 

A. Reference Models in Verification 

As illustrated in Figure 1, a common strategy in simulation-

based verification is to integrate the DUT and a reference model 

(RM) in a testbench and compare the state of the DUT and RM 

at specific times during the simulation. In processor core 

verification the state variables of interest will typically be the 

program counter (PC), general purpose registers (GPRs) plus 

the Control and Status Registers (CSRs). The most natural time 

to compare the state of the reference model and DUT is when 

an instruction has been retired. That is, execution of an 

instruction has completed and the values of the PC, GPRs and 

CSRs have been updated to reflect the effects of the instruction. 

 

Conceptually, the theory of operation of such a testbench is as 

follows: 

 

• Both the DUT and RM execute the same program. 

Note that in the CORE-V-VERIF testbench, these 

programs can be manually written by a human or 

generated by a random instruction stream generator 

(not shown in Figure 1). 

• Non-programmatic interrupts to normal program flow 

such as external interrupts and debug requests are 

sent to both the DUT and RM.  (Note: these “non-

programmatic interrupts to normal program flow are 

termed “asynchronous events” in the remainder of 

this paper.) 

• As each instruction retires, the state variables of the 

DUT and RM are compared. Mismatches are 

reported as errors. This method is known as step-and-

compare. 

 

In a typical processor core, the state of the PC, GPRs and CSRs 

are not accessible externally.  Additionally, due to the 

implementation of the processor’s internal pipeline, the values 

of these state variables may be updated at differing clock cycles 

as instructions are executed. Exposing the state of the DUT to 
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the testbench is the job of a module called a Tracer1. An 

important consideration for a Tracer is ensuring that all aspects 

of the core’s state are presented in a way that allows the 

consumer of Tracer outputs to attribute the state to a specific 

instruction. 

 

In the first generation testbench, the Tracer used was an ad-hoc 

behavioral model bound to the RTL exposing all processor 

states such as GPR, PC and CSR values. This Tracer lacked a 

documented interface and required frequent changes in both the 

Tracer itself and the Step-and-Compare testbench logic. 
 

The design and implementation of the reference model is a key 

consideration for this testbench architecture. An Instruction Set 

Simulator (ISS) is often used as an RM. Often developed and/or 

used by software development teams, an ISS can be custom-

built in-house, a commercial product, or available as an open-

source artifact. The CORE-V-VERIF environment used the 

Imperas RISC-V reference model[5,6] as the reference model 

for the embedded class cores. This was the strategy employed 

by the first generation CORE-V-VERIF environment. 

However, as we will see, it came with significant challenges, 

and the remainder of this paper will discuss these and introduce 

strategies for addressing them.  

 

The most obvious problem encountered when using an ISS as a 

reference model is caused by the different abstraction levels of 

the ISS and DUT.  The majority of DUTs are simulated at the 

Register Transfer Level, which by definition is a clock-cycle 

accurate description of hardware logic in which time is modeled 

as clock events. This is in contrast to a transaction-level model 

in which time is modeled as transaction cycles. In our case, an 

ISS of a processor core models time in terms of instructions. 

While an RTL model of a core may take multiple clock cycles 

to execute an instruction, depending on instruction fetch bus 

timing, the specific instruction being executed or the state of the 

internal pipeline; an ISS will usually execute all instructions in 

a single instruction cycle because the cycle timing of the 

physical interfaces to memory and the operation of the core’s 

pipeline are abstracted away. 

 

The abstraction inherent in an ISS is a powerful modeling 

technique, and it is highly effective in producing predictions of 

the core’s state when executing a series of instructions which 

are not subject to asynchronous events such as interrupts. 

Nevertheless, a method must be found to maintain 

synchronization between the ISS, which operates in terms of 

instruction cycles, and the DUT, which operates in terms of 

clock cycles. The method used by CORE-V-VERIF to maintain 

this synchronization is called “step-and-compare” and will be 

discussed below. 

 

A second problem when using an ISS as a reference model is 

the timing of “side effects”. An instruction is said to have side 

 
1 Unrelated to the Efficient Trace for RISC-V specification 

(https://github.com/riscv-non-isa/riscv-trace-spec/releases)  

effects if it updates one or more state variables which are not 

explicitly part of the instruction. For example, the CSR minstret 

is updated each time an instruction is retired. In most cases, side 

effects are easy to predict. In other cases, particularly in the 

event of an asynchronous interrupt, the timing of side effects in 

the ISS may differ from the RTL. This needs to be correctly 

managed to ensure that the DUT and RM don’t diverge and give 

a false positive for a bug. 

 

A. Step-and-Compare Architecture 

[7] documents the original step-and-compare method used in 

the first generation of CORE-V-VERIF testbenches.  An ISS is 

used as a reference model and is kept in sync with the RTL by 

running the RTL clock until an instruction is retired, at which 

point the RTL clock is stopped (“gapped”) and the reference 

model is allowed to run until it retires an instruction.  The 

testbench then compares the predicted processor state (from the 

reference model) to the actual processor state (from the RTL). 

This process repeats until the last instruction is retired and 

compared. 

 

This technique works very well in the absence of external 

asynchronous events such as debug requests, interrupts, 

memory access delays and memory bus errors. In the first 

generation of CORE-V-VERIF, the ISS and RTL were 

connected to the same interrupt and debug request inputs. Due 

to the clocking system enforced by the step-and-compare logic, 

the ISS would always “see” these external events as being 

synchronous to the start of an instruction. Due to the internal 

micro-architecture of the RTL, these external events may or 

may not be “seen” as occurring before or after the start of the 

same instruction. This would inevitably result in differences in 

the predicted and actual processor states and a false-negative 

comparison would result. 

 

To make matters worse, each asynchronous event needed to be 

handled as a unique event with core-specific code in the 

testbench to properly handle the behavior and side effects of 

these asynchronous events. This made the testbench “buggy” 

(prone to false-negatives) and difficult to maintain. 

 

In response to this, a second generation of step-and-compare 

was developed to build upon and fix many issues with the first 

generation while maintaining the same verification 

effectiveness. For the purposes of this discussion the most 

purposeful improvements were to formalize the Tracer interface 

definition. 

 



III. THE SECOND GENERATION CORE-V-VERIF 

ENVIRONMENT 

 

Figure 2: Second Generation CORE-V-VERIF UVM 

Environment 

 

Figure 2 above, illustrates the changes implemented to create 

the second generation UVM environment: 

 

• The ad-hoc Tracer used in the first generation is 

replaced by a Tracer conforming to an interface 

extended from the RVFI [8] specification. A new, 

simplified, second generation “step-and-compare 

2.0” was developed. 

• Asynchronous events such as interrupts and debug 

requests are connected to the core RTL (device under 

test), but not the ISS. 

Each point from the above list is significant and will be 

discussed further below. 

B. CORE-V Tracer using the RVFI + extensions 

In the first generation testbench, monitoring of processor 

activity was enabled by a specific-purpose Tracer. The Tracer 

was bound to the RTL exposing all processor states such as 

GPR, PC and CSR values. This Tracer was difficult to maintain 

and implemented with an ad-hoc interface, requiring 

customized frequent changes in the Step-and-Compare 

implementation. 

 

To address the issues with the ad-hoc tracer, the RISC-V 

Formal Interface (RVFI) specification was adapted to define the 

requirements for the processor Tracer. As much as was practical 

the RVFI was followed verbatim, with updates for extra 

requirements introduced by its usage in Step-and-Compare. The 

details of the specific CORE-V RVFI implementation 

extensions used is captured in the User Manual [9] of the 

CV32E40X, an RV32 processor core targeting embedded 

applications. 

 

The CORE-V Tracer probes the internal design of the core to 

perform the following functions: 

 

• Unambiguously identify instruction retirement. 

• Unambiguous reporting of both synchronous traps 

and asynchronous exceptions, interrupts and debug 

requests. 

• Expose the state of the core (PC, GPRs, CSRs). 

 

Depending on the complexity of the core’s pipeline, the logic 

required to implement the CORE-V Tracer ranges from trivial 

to complex.  To simplify the CORE-V Tracer, it is typically 

implemented as a behavioral module that is bound (using 

SystemVerilog bind) into the RTL model. This simplifies the 

implementation because the coding is not constrained by 

synthesis requirements and can be maintained as one or more 

source files outside of the RTL sources. 

 

A significant benefit of having a tracer interface specification is 

that it provides a well-defined blueprint of the requirements of 

a complete Tracer. This is more impactful than it at first 

appears. It can be difficult to fully specify the requirements of 

a Tracer apriori, without first having the experience of using a 

Tracer that does not fully fit your needs. It is often the case that 

such requirements can only be fully understood after several 

cycles of trial-and-error.  This experience is what eventually led 

to the new open-standard RISC-V Verification Interface 

(RVVI) specification [10] which will be discussed in more 

detail later 

 

C. Handling Asynchronous Events with CORE-V Second 

Generation Tracer 

In the first generation of CORE-V-VERIF, the reference model 

“saw” asynchronous events such as interrupts and debug 

requests simultaneously with the RTL model. Due to 

differences in timing, this could mean that the RTL and 

reference model would “take” the interrupt on different 

instructions. This placed a burden on the step-and-compare 

logic in the testbench to ensure that the reference model would 

take the interrupt on the same instruction as the RTL. 

 

In the second generation of CORE-V-VERIF, the reference 

model is not connected to asynchronous events. Thus, on its 

own, the reference model cannot determine when interrupts to 

normal program flow occur, such as external interrupts or 

external debug requests. The Tracer monitors and reports those 

events, and thus the “Step-and-Compare 2.0” logic can be used 

to inform the reference model to interrupt normal program flow, 

maintaining processor state lock-step with the DUT.  This is 

possible because the tracer interface is explicitly defined to 

indicate when this information is presented to the reference 

model and all of the information required by the reference 

model is provided at the time the RTL retires an instruction. 

 

https://docs.openhwgroup.org/projects/cv32e40x-user-manual/en/latest/rvfi.html
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For an example, consider what happens when a debug request 

is asserted.  The CORE-V tracer interface defines two signals 

rvfi_dbg and rvfi_dbg_mode that are valid when an instruction 

is retired.  Together these two signals indicate whether the core 

executed the retired instruction in debug mode and for the first 

instruction after entering debug, rvfi_dbg contains the debug 

cause.  In addition to providing this information, the CORE-V 

Tracer specifies clear rules for how debug entry is recognized: 

 

Debug entry is seen by the tracer interface as happening 

between instructions. This means that neither the last 

instruction before debug entry nor the first instruction of the 

debug handler will signal any direct side-effects. The first 

instruction of the handler will however show the resulting state 

caused by these side-effects (e.g. the CSR rmask/rdata signals 

will show the updated values, pc_rdata will be at the debug 

handler address, etc.). 

 

The CORE-V tracer interface has similarly comprehensive and 

rigorous definitions for how an interrupt is signaled and how 

side effects are modeled. This information greatly simplified 

the step-and-compare logic required to keep the RTL and ISS 

state in sync.  

 

However, this methodology left a serious verification hole: the 

reference model was not able to provide independent 

verification of the DUT’s response to asynchronous events. For 

example, in a case where multiple interrupts are enabled and 

pending, it was unable to verify that the correct one (by priority) 

was taken. It simply mirrored the actions of the DUT. Checking 

this type of behaviour was left to other testbench components. 

Given the difficulty of validating responses to randomly 

generated asynchronous events, this checking was often 

incomplete. This serious deficiency was addressed in the third 

generation CORE-V-VERIF environment. 

 

a) RVVI: The RISC-V Verification Interface 

The work of the OpenHW Group Verfication Task Group 

(VTG) on the first and second generation CORE-V-VERIF 

environments led to the observation that certain components 

should be common to all RISC-V processor verification 

environments, and common components should be accessible 

through standard interfaces. These interfaces have now been 

formalized in RVVI [10], an open and evolving standard for 

functional verification of RISC-V processors. Two major 

components of RVVI will be discussed below: RVVI-TRACE 

and RVVI-API. 
 

B. RVVI-TRACE 

A common component that benefits from a standard interface is 

the previously-discussed tracer. Every RISC-V processor under 

test needs a tracer module in order to extract internal state 

information required for effective verification. While the 

implementation of the tracer is specific to each processor’s 

microarchitecture, the requirements for the information that a 

tracer should provide are common, and are defined by the needs 

of the testbench. These requirements led to the creation of the 

RVVI-TRACE specification. RVVI-TRACE is specified as a 

SystemVerilog interface that connects the processor under test 

with the testbench. 

 

When determining what the standard interface for tracers 

should look like it was natural to study formal interfaces being 

used in processor verification and see if they were appropriate 

for dynamic (simulation based) verification. It was clear that 

RVFI did not meet the needs of functional verification, as it was 

designed for formal verification, and heavily extended and 

modified for CORE-V-VERIF. The CORE-V extensions to it 

were insufficient for a standard interface as they were specific 

to the requirements of the CV32E4* cores and did not anticipate 

the needs of the full set of RISC-V ISA variations. For example, 

RVFI did not have a method of signalling more than one 

register change (side effect) per instruction retirement, 

something which does happen in the RISC-V Zc extension. 

Today the RVVI-TRACE interface addresses this and other 

issues with RVFI, and can be seen as a natural evolution and 

extension into dynamic verification of RVFI. 

 

Another key feature of RVVI-TRACE is the mechanism for 

handling asynchronous inputs to the processor. RVVI-TRACE 

contains a SystemVerilog queue that is used to store multiple 

net changes that occur during the interval between instruction 

retirements, as well as when those changes occurred. This 

information is now available to the reference model or checker 

for validation of the processor's response to these events.  

 

For the CORE-V-VERIF environment, the benefits of adopting 

RVVI-TRACE further extend the benefits realized by the 

development of the initial CORE-V tracer interface. There is 

still the existing benefit of knowing upfront what are the 

requirements for an effective tracer and being able to clearly 

communicate these to the design team. There is the additional 

benefit of having an interface that supports the full suite of 

RISC-V ISA subsets so there is no need to modify it between 

different processor projects. This, in turn, permits reuse of any 

component that is a client of the RVVI-TRACE interface. 

 

C. RVVI-API 

Earlier we explained that comprehensive RISC-V processor 

verification requires a behavioural reference model of the 

processor. The reference model provides an independent 

representation of the processor’s internal state. It is subject to 

the same configuration and initial conditions and executes the 

same program as the DUT. The model should have the ability 

to run in lock-step with the DUT so that the two states can be 

continuously compared and bugs can be identified at the time 

they occur. This makes it faster to identify the failure and avoids 

unnecessary compute time running tests beyond a failure point 

(which happens in a log-compare based approach) In addition 

to the reference model, a processor verification environment 

needs a component to perform the comparisons between the 

model and the DUT, to keep track of any mismatches in state. 



This set of requirements led to the development of RVVI-API: 

a set of functions that must be implemented in the processor 

verification IP and supporting testbench components in order to 

comprehensively check the behaviour of the RISC-V processor 

under test.  

 

The diagram in Figure 3 below illustrates a canonical RISC-V 

processor verification environment using RVVI and RVVI-

compliant processor verification IP.  

 

 

Figure 3: Testbench for Advanced RISC-V processor 

verification using RVVI 

 

The introduction of the RVVI-API into CORE-V-VERIF has 

addressed some of the shortcomings and issues encountered 

with the previous step-and-compare environments. One of these 

areas is the configuration of the RISC-V verification IP and 

processor reference model. RVVI-API specifies functions 

(Figure 4) to configure specific memory regions, registers, or 

register fields as volatile.  

 

Volatile control and status registers (CSRs) and memory 

regions are those that change asynchronously to the program 

execution. They often require a cycle-accurate representation of 

the processor to model accurately. An example of a volatile 

CSR is a counter that increments every clock cycle. An example 

of a volatile memory location is the address space used by a 

memory-mapped peripheral. T 

  

In the first and second generation CORE-V-VERIF 

environments the verification IP and processor reference model 

had no notion of volatility. It was up to the step-and-compare 

logic to maintain a list of register comparisons to discard and to 

populate the correct register values in the reference model. This 

was necessary to ensure that the program running on the model 

and the processor core would exhibit the same behaviour.  

 

To address this problem, RVVI-API specifies functions to mark 

a register, register field, or memory region as volatile. It is now 

the responsibility of the reference model to keep track of 

volatile addresses and to ensure that the contents of these 

regions stay consistent with the DUT. RVVI-API also specifies 

functions to inform the reference model (and/or the VIP that 

encapsulates it) about processor read/write activity. When a 

volatile region is accessed the data from that location can be 

propagated to the reference model’s memory. This ensures that 

the test program will run as expected. 
 

import "DPI-C" function int 

rvviRefCsrSetVolatile( 

    input int hartId, 

    input int csrIndex); 

 

import "DPI-C" function int 

rvviRefMemorySetVolatile( 

    input longint addressLow, 

    input longint addressHigh); 

Figure 4: RVVI-API volatile functions 

 

THE THIRD GENERATION CORE-V-VERIF 

ENVIRONMENT 

 

 

Figure 5: The third generation CORE-V-VERIF 

environment 

 

Figure 5, above, illustrates the changes implemented to create 

the third and current generation UVM environment: 

• The CORE-V tracer has been replaced with an 

RVVI-compliant tracer 

• The Imperas Reference model has been replaced with 

ImperasDV verification IP (VIP) that incorporates 

the reference model 

• The step and compare logic has been replaced by 

RVVI  
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The benefits of adopting an RVVI-compliant tracer have been 

discussed in previous sections. At the time of writing, the 

migration from CORE-V’s use of RVFI with extensions to 

RVVI is an ongoing activity. 

 

The most impactful change has been the replacement of the 

reference model and the step-and-compare logic with a piece of 

verification IP. The ImperasDV VIP encapsulates a reference 

model of the target processor, and implements the functions 

specified by RVVI-API. It performs the internal state 

comparisons between the reference model and the DUT using 

information from the RVVI-TRACE interface, and keeps track 

of those results in an internal scoreboard. This eliminates the 

need for the error-prone and complex step-and-compare logic 

being hand coded in the testbench. Since asynchronous events 

are now communicated to the VIP using RVVI-TRACE the 

processor’s response to these can now be independently 

validated. 

 

The following section contains an explanation and example of 

how an architectural reference model can be used to provide 

validation of a processor’s handling of asynchronous inputs 

such as interrupts and halt requests. 

 

a) Handling Asynchronous Events with ImperasDV 

As previously discussed, one of the most challenging tasks in 

processor verification is maintaining a consistent view of 

program execution between an architectural and micro-

architectural representation. Using the predictions and 

validations from an architectural model in order to verify an 

RTL implementation is highly desirable, but it is a challenge to 

provide useful data and useful predictive behavior. 

 

Let's consider a very simple example: how to determine the 

correct point during program execution to apply an external 

asynchronous event such as an interrupt. When applying an 

interrupt to an architectural representation it can be taken 

immediately (if enabled) upon receipt, causing the processor to 

take the exception and begin execution at whatever is defined 

as the interrupt handling address. 

 

In a micro-architectural implementation, it is not so simple. For 

example, the interrupt input logic may contain oversampling to 

ensure that the interrupt logic is observed to be active for N 

clock cycles. Once the logic has decided that an interrupt is 

active, it then has to be merged into the instruction pipeline at 

an appropriate time. It may be decided that it is wasteful to 

discard a complex instruction which executes for 32 cycles if it 

has already been executing for 28 of those. It’s better to take the 

interrupt latency penalty of 4 cycles, rather than discard and 

lose 28 cycles. This is one of many micro-architectural 

performance decisions that must be considered in order to 

ensure the best throughput versus responsiveness. 

 

Using ImperasDV to analyse legal scenarios recently revealed 

a bug in the OpenHW Group’s CV32E40X processor core. It 

involved the following sequence of events:  

 

A set of randomly-generated external interrupt signals have 

been propagating into the local interrupts of the processor core. 

These interrupts are masked by two levels of logic, firstly there 

is the MIE (Machine interrupt Enable) CSR, and the global 

interrupt enable field of the MSTATUS register 

(MSTATUS.MIE). An interrupt is detected by evaluating the 

following expression: 

 

IRQ = MSTATUS.MIE && ((MIE & MIP) != 0x0); 

Figure 6 Expression for detecting a valid interrupt 

 

The expression states that for an IRQ to be pending and enabled 

we must have the equivalent positional bits True in both MIE 

and MIP, and the global interrupt enable MSTATUS.MIE must 

also be True. 

 

The upper 16 MIP bits (local Interrupt 0-15) are a direct 

representation of the interrupt pins on the core, bearing in mind 

that there is clocked logic to sample these pins.  

 

When the mret instruction is executed, the expression in Figure 

6 evaluates to true. However, since the interrupt pins have been 

toggling during the interval since the previous instruction was 

retired it is unknown which interrupt should currently be active.  

The verification environment must handle these events and 

ensure that the DUT’s response is legal. 

 

In this instance, the DUT actually did not service any interrupt, 

it executed the ebreak instruction and entered debug mode 

instead. Since this did not match any of the legal scenarios an 

error was flagged. This bug is now captured in the OpenHW 

Group’s GitHub issue tracker [11]. 
 

IV. FUNCTIONAL COVERAGE 

The methodology discussed so far checks functional behaviour, 

but it does not provide any evidence about how much of the 

design’s possible behaviour has been tested. A verification plan 

should have a comprehensive list of all the behaviours that need 

to be tested, and functional coverage provides a way to measure 

that.  

 

Developing functional coverage requires a comprehensive list 

of behaviours to be covered. For RISC-V, this is further 

complicated by optional extensions and customisations that 

further change legal behaviour of a design. The functional 

coverage required for a RISC-V processor verification project 

can be divided into two categories. The first is coverage of the 

RISC-V ISA. This involves covering the instructions and their 

operands as specified in the ISA for the extensions being used. 

Considering the RV64 ISA and some of the more common 



extensions, if we just look at the number of instructions to be 

covered: 

• Integer: 56 

• Maths: 13 

• Compressed: 30 

• FP-Single: 30 

• FP-Double: 32 

• Vector: 356 

• Bitmanip: 47 

• Krypto-scalar: 85 

• P-DSP: 318 

For RV64 that is 967 instructions. Each instruction requires 

coverpoints and covergroups, taking a few 10s of lines of code. 

So that means perhaps 10000 to 40000 lines of code to be 

written and tested. It’s important to note that this coverage code 

is not specific to any processor implementation, it is defined by 

the ISA specification and should be resuable. While it is 

possible to manually create coverage points, if these are closely 

coupled to the RTL design, they are unlikely to be portable 

between projects and the manual nature of creating them means 

they will have their own need to be debugged and validated. 

 

The second category of functional coverage code addresses 

custom core features such as privilege ISA items, interrupts, 

debug block, pipeline, custom extensions and CSRs. These 

covergroups and coverpoints are specific to the processor’s 

implementation and have a lower potential for reuse.  

 

OpenHW group has created an Advanced RISC-V Verification 

Methodology (ARVM) working group [12] to develop and 

review an approach for functional coverage for RISC-V. As 

part of this group, Imperas proposes an approach where the 

coverage for the ISA can be automatically generated from a 

machine-readable description of the RISC-V ISA. The 

coverage data is sampled from the RVVI-TRACE interface, 

making it seamless to use in any project that has an RVVI-

compliant tracer (see Figure 7). This approach is design 

agnostic and can be used with the previously described lock-

step-compare simulation to ensure operation is correct at the 

same time as coverage data is captured. Imperas has made 

functional coverage for the RV32I base ISA available via the 

RISC-V ISACOV project on GitHub[13], with additional 

coverage for other extensions being available under a 

commercial license. 

 

 
 

Figure [7] shows how data sampled by RVVI-TRACE can be 

used to measure coverage. 

 

The Imperas approach avoids both the manual effort and high 

potential for error involved in developing a large amount of 

functional coverage code. This approach allows for better reuse 

and is much more scalable. Using riscvISACOV it is easy to 

select the appropriate coverage points to match the design 

configuration (ie RV32 vs RV64, which ISA extensions are 

chosen etc).  

 

 

V. FUTURE WORK 

The CORE-V-VERIF verification environment continues to 

evolve both in response to new requirements from new cores 

and to on-going learnings from current and previous 

verification efforts. The OpenHW repository of cores continues 

to grow, with a recent contribution being an applications core 

from Harvey Mudd College. The methodology described above 

is being applied to the core and it has already found a number 

of bugs.  

 

For functional coverage, the plan is to extend this to include 

CSRs and data hazards. Testing the Havey Mudd core will also 

allow for development of coverage for complex areas such as 

Memory Management Unit (MMU) and other features found in 

applications cores. 

 

VI. SUMMARY 

The OpenHW Group’s Verification task group has been a 

pioneer in the field of RISC-V processor verification. Through 

the CORE-V-VERIF environment we have employed different 

approaches and evaluated the merits and shortcomings of each. 

With each generation the CORE-V-VERIF environment has 

improved to become more robust, more reusable, and ultimately 

better at finding RTL bugs. The current generation of CORE-

V-VERIF uses RISC-V processor verification IP enabled by the 

RVVI to realize a comprehensive verification methodology that 

encompasses asynchronous peripheral events that occur 
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randomly during program execution. This is the state of the art 

methodology at present, however the verification task group 

members are highly motivated to continue to innovate and 

advance the practice of RISC-V processor verification.  

 

 

VII. ACKNOWLEDGMENTS 

The authors would like to recognize the participation and 

contribution to this work of several of the OpenHW Group 

collaborators: Simon Davidmann and Aidan Dodds of Imperas 

Software, Greg Tumbush of EM Microelectronics, Steve 

Richmond, formerly of Silicon Labs, and Dolphin Design. 

 

 

VIII. REFERENCES 

[1] https://semiwiki.com/eda/324443-the-state-of-ic-and-asic-functional-
verification/ 

[2] https://github.com/openhwgroup/core-v-cores 
[3] https://github.com/openhwgroup/core-v-verif 
[4] https://docs.openhwgroup.org/projects/core-v-

verif/en/latest/quick_start.html 
[5] https://en.wikipedia.org/wiki/OVPsim 
[6] https://www.imperas.com/   
[7] Jump Start your RISCV project with OpenHW.  DVCon US, March 1-4, 

2021 (Virtual) - https://www.imperas.com/articles/dvcon-2021-paper-
jump-start-your-riscv-project-openhw 

[8] https://github.com/SymbioticEDA/riscv-formal/blob/master/docs/rvfi.md 

[9] https://docs.openhwgroup.org/projects/cv32e40x-user-
manual/en/latest/rvfi.html 

[10] RISC-V Verification Interface - https://github.com/riscv-
verification/RVVI  

[11] https://github.com/openhwgroup/cv32e40x/issues/665   

[12] OpenHW group Advanced RISCV Verification methodology 

https://github.com/openhwgroup/programs/tree/master/TGs/verification-task-
group/projects  

[13] RISC-V ISAcov https://github.com/riscv-verification/riscvISACOV  

 

 

https://github.com/openhwgroup/core-v-cores
https://github.com/openhwgroup/core-v-verif
https://docs.openhwgroup.org/projects/core-v-verif/en/latest/quick_start.html
https://docs.openhwgroup.org/projects/core-v-verif/en/latest/quick_start.html
https://en.wikipedia.org/wiki/OVPsim
https://www.imperas.com/
https://github.com/SymbioticEDA/riscv-formal/blob/master/docs/rvfi.md
https://docs.openhwgroup.org/projects/cv32e40x-user-manual/en/latest/rvfi.html
https://docs.openhwgroup.org/projects/cv32e40x-user-manual/en/latest/rvfi.html
https://github.com/riscv-verification/RVVI
https://github.com/riscv-verification/RVVI
https://github.com/openhwgroup/cv32e40x/issues/665
https://github.com/openhwgroup/programs/tree/master/TGs/verification-task-group/projects
https://github.com/openhwgroup/programs/tree/master/TGs/verification-task-group/projects
https://github.com/riscv-verification/riscvISACOV

