
www.embedded-world.eu

Advanced RISC-V verification methodology

projects

Jon Taylor, Aimee Sutton

Imperas Software

Oxford, UK

jont@imperas.com; aimees@imperas.com

Mike Thompson

OpenHWGroup

mike@openhwgroup.org

I. ABSTRACT

The open standard of RISC-V offers developers new freedoms

to explore new design flexibilities and enable innovations with

optimized processors. As a design moves from concept to

implementation new resources are appearing to help with

standards for testbenches, verification IP reuse and coverage

analysis. RISC-V offers every SoC team the possibility to

design an optimized processor, but this also implies the SoC

design verification teams will need to address the challenge and

complexity of processor verification.

This paper outlines open standards and methodologies that

assist in both the efficiency and support for the growing

community of RISC-V adopters.

Key aspects include:

• Test Bench integration standards to support

SystemVerilog flows based on traditional SoC

techniques extended for RISC-V processor design

verification.

• Coverage methodologies that support the

complexities of process design with asynchronous

events including interrupts and debug operations,

plus hardware configurations including Out-Of-Order

pipelines, vector extensions and custom instructions.

Based on examples from several popular open-source cores this

paper will provide guidelines that can help both open-source

and commercial projects address the RISC-V functional

verification challenge.

I. INTRODUCTION

The popularity of the RISC-V instruction set architecture (ISA)

for microprocessors is growing, and with it is the need for, and

interest in, processor-specific design verification techniques.

Until recently, CPU IP was generally provided from a small set

of companies. As RISC-V has grown in popularity, many more

engineers are getting involved in processor design. Even prior

to this, the cost of SoC verification was half the total cost of the

design while a recent report[1] shows that even design

engineers spend half their time on verification. Introducing

custom or customized CPUs introduces additional verification

challenges. Industry standard techniques such as constrained-

random generation and functional coverage can help, but it is

inefficient for every designer to create their own methodology

and integration of verification IP components.

OpenHW group was created to develop open source IP,

designed and verified to industry standards and ready for

industrial deployment, collectively known as the CORE-V

family [2]. This includes verification of their cores, and the

organization includes a Verification Task group with a focus on

ensuring that the CORE-V family of open-source RISC-V

processor cores is verified to industry standards, so that anyone

who adopts these cores can feel confident that they are ready

for silicon. The verification environment used to verify the

CORE-V cores is known as CORE-V-VERIF [3] and it too is

an open-source artifact, available on GitHub.

The first and second generations of OpenHW Group’s CORE-

V-VERIF utilized a C Reference Model (RM) of the processor

embedded in a UVM testbench. The reference model and the

Device Under Test (DUT) were run in lock-step, each executing

the same program, while the testbench compared the internal

state of the two at the retirement of every instruction. This

became known as the step-and-compare methodology. Used

together with a random instruction stream generator and UVM

agents providing peripheral stimulus (such as interrupts), it was

an effective method of achieving verification closure for the

CV32E40P RISC-V processor RTL.

Although successful, the time and human effort required to

develop the first and second generation CORE-V-VERIF

environments and achieve verification closure was high. The

OpenHW Group was developing ambitious plans to achieve the

same level of verification for at least five additional RISC-V

cores, and it was clear that a more efficient methodology was

required.

The experience with these verification projects led to the

observation that some components should be common to all

RISC-V processor testbenches, and common components

should conform to standard interfaces. This led to the

development of RVVI: the RISC-V Verification Interface. In

mailto:jont@imperas.com
mailto:aimees@imperas.com
mailto:mike@openhwgroup.org

turn, the availability of standard interfaces made it possible to

develop verification IP that implements these common

components. These innovations have contributed to the third

generation of the CORE-V-VERIF environment which is in use

today with multiple RISC-V core developments.

Building on these standards is also a need for functional

coverage of the design. This coverage is a way of measuring

how much of the design has been comprehensively tested (as

opposed to compliance testing which is far from exhaustive) .

Imperas has developed functional coverage for much of the

RISC-V ISA, including many standard extensions. With RISC-

V supporting customisation, again a flow is needed to allow

designs with custom instructions to add their own functional

coverage points.

Functional coverage for the ISA itself is not enough to fully

validate a design, since there are architectural behaviours

beyond just instruction execution. Events such as interrupts,

aborts or debug requests can interrupt the program flow

asynchronously and this often exposes bugs. Thorough

verification requires a process for testing these.

The following sections will provide greater detail into the

evolution of the CORE-V-VERIF environment and RISC-V

verification methodology. The first and second generation

CORE-V-VERIF environments will be described, along with

the highlights and shortcomings of each. Next the RISC-V

Verification Interface (RVVI) will be described in detail, with

an explanation of how it starts to address the shortcomings

mentioned previously. The evolution continues with the

introduction of verification IP to promote reuse, improve

checking, and gain further efficiency. This lead to the present

day third generation CORE-V-VERIF environment which will

be shown to demonstrate the successful application of these

techniques and provide context for future work. We then

discussion the importance of functional coverage and the

riscvISACOV project developing reusable functional coverage

for RISC-V.

II. THE FIRST GENERATION CORE-V-VERIF

ENVIRONMENT

The OpenHW Group develops open-source design and

verification IP centered on the CORE-V family of RISC-V

cores and related IP. The verification environments for the

CORE-V cores are maintained as open-source artifacts in the

CORE-V-VERIF GitHub repository[3]. The first generation

CORE-V-VERIF environment is illustrated in Figure 1 below.

Figure 1: First Generation CORE-V-VERIF environment

A. Reference Models in Verification

As illustrated in Figure 1, a common strategy in simulation-

based verification is to integrate the DUT and a reference model

(RM) in a testbench and compare the state of the DUT and RM

at specific times during the simulation. In processor core

verification the state variables of interest will typically be the

program counter (PC), general purpose registers (GPRs) plus

the Control and Status Registers (CSRs). The most natural time

to compare the state of the reference model and DUT is when

an instruction has been retired. That is, execution of an

instruction has completed and the values of the PC, GPRs and

CSRs have been updated to reflect the effects of the instruction.

Conceptually, the theory of operation of such a testbench is as

follows:

• Both the DUT and RM execute the same program.

Note that in the CORE-V-VERIF testbench, these

programs can be manually written by a human or

generated by a random instruction stream generator

(not shown in Figure 1).

• Non-programmatic interrupts to normal program flow

such as external interrupts and debug requests are

sent to both the DUT and RM. (Note: these “non-

programmatic interrupts to normal program flow are

termed “asynchronous events” in the remainder of

this paper.)

• As each instruction retires, the state variables of the

DUT and RM are compared. Mismatches are

reported as errors. This method is known as step-and-

compare.

In a typical processor core, the state of the PC, GPRs and CSRs

are not accessible externally. Additionally, due to the

implementation of the processor’s internal pipeline, the values

of these state variables may be updated at differing clock cycles

as instructions are executed. Exposing the state of the DUT to

https://github.com/openhwgroup/core-v-verif/

www.embedded-world.eu

the testbench is the job of a module called a Tracer1. An

important consideration for a Tracer is ensuring that all aspects

of the core’s state are presented in a way that allows the

consumer of Tracer outputs to attribute the state to a specific

instruction.

In the first generation testbench, the Tracer used was an ad-hoc

behavioral model bound to the RTL exposing all processor

states such as GPR, PC and CSR values. This Tracer lacked a

documented interface and required frequent changes in both the

Tracer itself and the Step-and-Compare testbench logic.

The design and implementation of the reference model is a key

consideration for this testbench architecture. An Instruction Set

Simulator (ISS) is often used as an RM. Often developed and/or

used by software development teams, an ISS can be custom-

built in-house, a commercial product, or available as an open-

source artifact. The CORE-V-VERIF environment used the

Imperas RISC-V reference model[5,6] as the reference model

for the embedded class cores. This was the strategy employed

by the first generation CORE-V-VERIF environment.

However, as we will see, it came with significant challenges,

and the remainder of this paper will discuss these and introduce

strategies for addressing them.

The most obvious problem encountered when using an ISS as a

reference model is caused by the different abstraction levels of

the ISS and DUT. The majority of DUTs are simulated at the

Register Transfer Level, which by definition is a clock-cycle

accurate description of hardware logic in which time is modeled

as clock events. This is in contrast to a transaction-level model

in which time is modeled as transaction cycles. In our case, an

ISS of a processor core models time in terms of instructions.

While an RTL model of a core may take multiple clock cycles

to execute an instruction, depending on instruction fetch bus

timing, the specific instruction being executed or the state of the

internal pipeline; an ISS will usually execute all instructions in

a single instruction cycle because the cycle timing of the

physical interfaces to memory and the operation of the core’s

pipeline are abstracted away.

The abstraction inherent in an ISS is a powerful modeling

technique, and it is highly effective in producing predictions of

the core’s state when executing a series of instructions which

are not subject to asynchronous events such as interrupts.

Nevertheless, a method must be found to maintain

synchronization between the ISS, which operates in terms of

instruction cycles, and the DUT, which operates in terms of

clock cycles. The method used by CORE-V-VERIF to maintain

this synchronization is called “step-and-compare” and will be

discussed below.

A second problem when using an ISS as a reference model is

the timing of “side effects”. An instruction is said to have side

1 Unrelated to the Efficient Trace for RISC-V specification

(https://github.com/riscv-non-isa/riscv-trace-spec/releases)

effects if it updates one or more state variables which are not

explicitly part of the instruction. For example, the CSR minstret

is updated each time an instruction is retired. In most cases, side

effects are easy to predict. In other cases, particularly in the

event of an asynchronous interrupt, the timing of side effects in

the ISS may differ from the RTL. This needs to be correctly

managed to ensure that the DUT and RM don’t diverge and give

a false positive for a bug.

A. Step-and-Compare Architecture

[7] documents the original step-and-compare method used in

the first generation of CORE-V-VERIF testbenches. An ISS is

used as a reference model and is kept in sync with the RTL by

running the RTL clock until an instruction is retired, at which

point the RTL clock is stopped (“gapped”) and the reference

model is allowed to run until it retires an instruction. The

testbench then compares the predicted processor state (from the

reference model) to the actual processor state (from the RTL).

This process repeats until the last instruction is retired and

compared.

This technique works very well in the absence of external

asynchronous events such as debug requests, interrupts,

memory access delays and memory bus errors. In the first

generation of CORE-V-VERIF, the ISS and RTL were

connected to the same interrupt and debug request inputs. Due

to the clocking system enforced by the step-and-compare logic,

the ISS would always “see” these external events as being

synchronous to the start of an instruction. Due to the internal

micro-architecture of the RTL, these external events may or

may not be “seen” as occurring before or after the start of the

same instruction. This would inevitably result in differences in

the predicted and actual processor states and a false-negative

comparison would result.

To make matters worse, each asynchronous event needed to be

handled as a unique event with core-specific code in the

testbench to properly handle the behavior and side effects of

these asynchronous events. This made the testbench “buggy”

(prone to false-negatives) and difficult to maintain.

In response to this, a second generation of step-and-compare

was developed to build upon and fix many issues with the first

generation while maintaining the same verification

effectiveness. For the purposes of this discussion the most

purposeful improvements were to formalize the Tracer interface

definition.

III. THE SECOND GENERATION CORE-V-VERIF

ENVIRONMENT

Figure 2: Second Generation CORE-V-VERIF UVM

Environment

Figure 2 above, illustrates the changes implemented to create

the second generation UVM environment:

• The ad-hoc Tracer used in the first generation is

replaced by a Tracer conforming to an interface

extended from the RVFI [8] specification. A new,

simplified, second generation “step-and-compare

2.0” was developed.

• Asynchronous events such as interrupts and debug

requests are connected to the core RTL (device under

test), but not the ISS.

Each point from the above list is significant and will be

discussed further below.

B. CORE-V Tracer using the RVFI + extensions

In the first generation testbench, monitoring of processor

activity was enabled by a specific-purpose Tracer. The Tracer

was bound to the RTL exposing all processor states such as

GPR, PC and CSR values. This Tracer was difficult to maintain

and implemented with an ad-hoc interface, requiring

customized frequent changes in the Step-and-Compare

implementation.

To address the issues with the ad-hoc tracer, the RISC-V

Formal Interface (RVFI) specification was adapted to define the

requirements for the processor Tracer. As much as was practical

the RVFI was followed verbatim, with updates for extra

requirements introduced by its usage in Step-and-Compare. The

details of the specific CORE-V RVFI implementation

extensions used is captured in the User Manual [9] of the

CV32E40X, an RV32 processor core targeting embedded

applications.

The CORE-V Tracer probes the internal design of the core to

perform the following functions:

• Unambiguously identify instruction retirement.

• Unambiguous reporting of both synchronous traps

and asynchronous exceptions, interrupts and debug

requests.

• Expose the state of the core (PC, GPRs, CSRs).

Depending on the complexity of the core’s pipeline, the logic

required to implement the CORE-V Tracer ranges from trivial

to complex. To simplify the CORE-V Tracer, it is typically

implemented as a behavioral module that is bound (using

SystemVerilog bind) into the RTL model. This simplifies the

implementation because the coding is not constrained by

synthesis requirements and can be maintained as one or more

source files outside of the RTL sources.

A significant benefit of having a tracer interface specification is

that it provides a well-defined blueprint of the requirements of

a complete Tracer. This is more impactful than it at first

appears. It can be difficult to fully specify the requirements of

a Tracer apriori, without first having the experience of using a

Tracer that does not fully fit your needs. It is often the case that

such requirements can only be fully understood after several

cycles of trial-and-error. This experience is what eventually led

to the new open-standard RISC-V Verification Interface

(RVVI) specification [10] which will be discussed in more

detail later

C. Handling Asynchronous Events with CORE-V Second

Generation Tracer

In the first generation of CORE-V-VERIF, the reference model

“saw” asynchronous events such as interrupts and debug

requests simultaneously with the RTL model. Due to

differences in timing, this could mean that the RTL and

reference model would “take” the interrupt on different

instructions. This placed a burden on the step-and-compare

logic in the testbench to ensure that the reference model would

take the interrupt on the same instruction as the RTL.

In the second generation of CORE-V-VERIF, the reference

model is not connected to asynchronous events. Thus, on its

own, the reference model cannot determine when interrupts to

normal program flow occur, such as external interrupts or

external debug requests. The Tracer monitors and reports those

events, and thus the “Step-and-Compare 2.0” logic can be used

to inform the reference model to interrupt normal program flow,

maintaining processor state lock-step with the DUT. This is

possible because the tracer interface is explicitly defined to

indicate when this information is presented to the reference

model and all of the information required by the reference

model is provided at the time the RTL retires an instruction.

https://docs.openhwgroup.org/projects/cv32e40x-user-manual/en/latest/rvfi.html

www.embedded-world.eu

For an example, consider what happens when a debug request

is asserted. The CORE-V tracer interface defines two signals

rvfi_dbg and rvfi_dbg_mode that are valid when an instruction

is retired. Together these two signals indicate whether the core

executed the retired instruction in debug mode and for the first

instruction after entering debug, rvfi_dbg contains the debug

cause. In addition to providing this information, the CORE-V

Tracer specifies clear rules for how debug entry is recognized:

Debug entry is seen by the tracer interface as happening

between instructions. This means that neither the last

instruction before debug entry nor the first instruction of the

debug handler will signal any direct side-effects. The first

instruction of the handler will however show the resulting state

caused by these side-effects (e.g. the CSR rmask/rdata signals

will show the updated values, pc_rdata will be at the debug

handler address, etc.).

The CORE-V tracer interface has similarly comprehensive and

rigorous definitions for how an interrupt is signaled and how

side effects are modeled. This information greatly simplified

the step-and-compare logic required to keep the RTL and ISS

state in sync.

However, this methodology left a serious verification hole: the

reference model was not able to provide independent

verification of the DUT’s response to asynchronous events. For

example, in a case where multiple interrupts are enabled and

pending, it was unable to verify that the correct one (by priority)

was taken. It simply mirrored the actions of the DUT. Checking

this type of behaviour was left to other testbench components.

Given the difficulty of validating responses to randomly

generated asynchronous events, this checking was often

incomplete. This serious deficiency was addressed in the third

generation CORE-V-VERIF environment.

a) RVVI: The RISC-V Verification Interface

The work of the OpenHW Group Verfication Task Group

(VTG) on the first and second generation CORE-V-VERIF

environments led to the observation that certain components

should be common to all RISC-V processor verification

environments, and common components should be accessible

through standard interfaces. These interfaces have now been

formalized in RVVI [10], an open and evolving standard for

functional verification of RISC-V processors. Two major

components of RVVI will be discussed below: RVVI-TRACE

and RVVI-API.

B. RVVI-TRACE

A common component that benefits from a standard interface is

the previously-discussed tracer. Every RISC-V processor under

test needs a tracer module in order to extract internal state

information required for effective verification. While the

implementation of the tracer is specific to each processor’s

microarchitecture, the requirements for the information that a

tracer should provide are common, and are defined by the needs

of the testbench. These requirements led to the creation of the

RVVI-TRACE specification. RVVI-TRACE is specified as a

SystemVerilog interface that connects the processor under test

with the testbench.

When determining what the standard interface for tracers

should look like it was natural to study formal interfaces being

used in processor verification and see if they were appropriate

for dynamic (simulation based) verification. It was clear that

RVFI did not meet the needs of functional verification, as it was

designed for formal verification, and heavily extended and

modified for CORE-V-VERIF. The CORE-V extensions to it

were insufficient for a standard interface as they were specific

to the requirements of the CV32E4* cores and did not anticipate

the needs of the full set of RISC-V ISA variations. For example,

RVFI did not have a method of signalling more than one

register change (side effect) per instruction retirement,

something which does happen in the RISC-V Zc extension.

Today the RVVI-TRACE interface addresses this and other

issues with RVFI, and can be seen as a natural evolution and

extension into dynamic verification of RVFI.

Another key feature of RVVI-TRACE is the mechanism for

handling asynchronous inputs to the processor. RVVI-TRACE

contains a SystemVerilog queue that is used to store multiple

net changes that occur during the interval between instruction

retirements, as well as when those changes occurred. This

information is now available to the reference model or checker

for validation of the processor's response to these events.

For the CORE-V-VERIF environment, the benefits of adopting

RVVI-TRACE further extend the benefits realized by the

development of the initial CORE-V tracer interface. There is

still the existing benefit of knowing upfront what are the

requirements for an effective tracer and being able to clearly

communicate these to the design team. There is the additional

benefit of having an interface that supports the full suite of

RISC-V ISA subsets so there is no need to modify it between

different processor projects. This, in turn, permits reuse of any

component that is a client of the RVVI-TRACE interface.

C. RVVI-API

Earlier we explained that comprehensive RISC-V processor

verification requires a behavioural reference model of the

processor. The reference model provides an independent

representation of the processor’s internal state. It is subject to

the same configuration and initial conditions and executes the

same program as the DUT. The model should have the ability

to run in lock-step with the DUT so that the two states can be

continuously compared and bugs can be identified at the time

they occur. This makes it faster to identify the failure and avoids

unnecessary compute time running tests beyond a failure point

(which happens in a log-compare based approach) In addition

to the reference model, a processor verification environment

needs a component to perform the comparisons between the

model and the DUT, to keep track of any mismatches in state.

This set of requirements led to the development of RVVI-API:

a set of functions that must be implemented in the processor

verification IP and supporting testbench components in order to

comprehensively check the behaviour of the RISC-V processor

under test.

The diagram in Figure 3 below illustrates a canonical RISC-V

processor verification environment using RVVI and RVVI-

compliant processor verification IP.

Figure 3: Testbench for Advanced RISC-V processor

verification using RVVI

The introduction of the RVVI-API into CORE-V-VERIF has

addressed some of the shortcomings and issues encountered

with the previous step-and-compare environments. One of these

areas is the configuration of the RISC-V verification IP and

processor reference model. RVVI-API specifies functions

(Figure 4) to configure specific memory regions, registers, or

register fields as volatile.

Volatile control and status registers (CSRs) and memory

regions are those that change asynchronously to the program

execution. They often require a cycle-accurate representation of

the processor to model accurately. An example of a volatile

CSR is a counter that increments every clock cycle. An example

of a volatile memory location is the address space used by a

memory-mapped peripheral. T

In the first and second generation CORE-V-VERIF

environments the verification IP and processor reference model

had no notion of volatility. It was up to the step-and-compare

logic to maintain a list of register comparisons to discard and to

populate the correct register values in the reference model. This

was necessary to ensure that the program running on the model

and the processor core would exhibit the same behaviour.

To address this problem, RVVI-API specifies functions to mark

a register, register field, or memory region as volatile. It is now

the responsibility of the reference model to keep track of

volatile addresses and to ensure that the contents of these

regions stay consistent with the DUT. RVVI-API also specifies

functions to inform the reference model (and/or the VIP that

encapsulates it) about processor read/write activity. When a

volatile region is accessed the data from that location can be

propagated to the reference model’s memory. This ensures that

the test program will run as expected.

import "DPI-C" function int

rvviRefCsrSetVolatile(

 input int hartId,

 input int csrIndex);

import "DPI-C" function int

rvviRefMemorySetVolatile(

 input longint addressLow,

 input longint addressHigh);

Figure 4: RVVI-API volatile functions

THE THIRD GENERATION CORE-V-VERIF

ENVIRONMENT

Figure 5: The third generation CORE-V-VERIF

environment

Figure 5, above, illustrates the changes implemented to create

the third and current generation UVM environment:

• The CORE-V tracer has been replaced with an

RVVI-compliant tracer

• The Imperas Reference model has been replaced with

ImperasDV verification IP (VIP) that incorporates

the reference model

• The step and compare logic has been replaced by

RVVI

www.embedded-world.eu

The benefits of adopting an RVVI-compliant tracer have been

discussed in previous sections. At the time of writing, the

migration from CORE-V’s use of RVFI with extensions to

RVVI is an ongoing activity.

The most impactful change has been the replacement of the

reference model and the step-and-compare logic with a piece of

verification IP. The ImperasDV VIP encapsulates a reference

model of the target processor, and implements the functions

specified by RVVI-API. It performs the internal state

comparisons between the reference model and the DUT using

information from the RVVI-TRACE interface, and keeps track

of those results in an internal scoreboard. This eliminates the

need for the error-prone and complex step-and-compare logic

being hand coded in the testbench. Since asynchronous events

are now communicated to the VIP using RVVI-TRACE the

processor’s response to these can now be independently

validated.

The following section contains an explanation and example of

how an architectural reference model can be used to provide

validation of a processor’s handling of asynchronous inputs

such as interrupts and halt requests.

a) Handling Asynchronous Events with ImperasDV

As previously discussed, one of the most challenging tasks in

processor verification is maintaining a consistent view of

program execution between an architectural and micro-

architectural representation. Using the predictions and

validations from an architectural model in order to verify an

RTL implementation is highly desirable, but it is a challenge to

provide useful data and useful predictive behavior.

Let's consider a very simple example: how to determine the

correct point during program execution to apply an external

asynchronous event such as an interrupt. When applying an

interrupt to an architectural representation it can be taken

immediately (if enabled) upon receipt, causing the processor to

take the exception and begin execution at whatever is defined

as the interrupt handling address.

In a micro-architectural implementation, it is not so simple. For

example, the interrupt input logic may contain oversampling to

ensure that the interrupt logic is observed to be active for N

clock cycles. Once the logic has decided that an interrupt is

active, it then has to be merged into the instruction pipeline at

an appropriate time. It may be decided that it is wasteful to

discard a complex instruction which executes for 32 cycles if it

has already been executing for 28 of those. It’s better to take the

interrupt latency penalty of 4 cycles, rather than discard and

lose 28 cycles. This is one of many micro-architectural

performance decisions that must be considered in order to

ensure the best throughput versus responsiveness.

Using ImperasDV to analyse legal scenarios recently revealed

a bug in the OpenHW Group’s CV32E40X processor core. It

involved the following sequence of events:

A set of randomly-generated external interrupt signals have

been propagating into the local interrupts of the processor core.

These interrupts are masked by two levels of logic, firstly there

is the MIE (Machine interrupt Enable) CSR, and the global

interrupt enable field of the MSTATUS register

(MSTATUS.MIE). An interrupt is detected by evaluating the

following expression:

IRQ = MSTATUS.MIE && ((MIE & MIP) != 0x0);

Figure 6 Expression for detecting a valid interrupt

The expression states that for an IRQ to be pending and enabled

we must have the equivalent positional bits True in both MIE

and MIP, and the global interrupt enable MSTATUS.MIE must

also be True.

The upper 16 MIP bits (local Interrupt 0-15) are a direct

representation of the interrupt pins on the core, bearing in mind

that there is clocked logic to sample these pins.

When the mret instruction is executed, the expression in Figure

6 evaluates to true. However, since the interrupt pins have been

toggling during the interval since the previous instruction was

retired it is unknown which interrupt should currently be active.

The verification environment must handle these events and

ensure that the DUT’s response is legal.

In this instance, the DUT actually did not service any interrupt,

it executed the ebreak instruction and entered debug mode

instead. Since this did not match any of the legal scenarios an

error was flagged. This bug is now captured in the OpenHW

Group’s GitHub issue tracker [11].

IV. FUNCTIONAL COVERAGE

The methodology discussed so far checks functional behaviour,

but it does not provide any evidence about how much of the

design’s possible behaviour has been tested. A verification plan

should have a comprehensive list of all the behaviours that need

to be tested, and functional coverage provides a way to measure

that.

Developing functional coverage requires a comprehensive list

of behaviours to be covered. For RISC-V, this is further

complicated by optional extensions and customisations that

further change legal behaviour of a design. The functional

coverage required for a RISC-V processor verification project

can be divided into two categories. The first is coverage of the

RISC-V ISA. This involves covering the instructions and their

operands as specified in the ISA for the extensions being used.

Considering the RV64 ISA and some of the more common

extensions, if we just look at the number of instructions to be

covered:

• Integer: 56

• Maths: 13

• Compressed: 30

• FP-Single: 30

• FP-Double: 32

• Vector: 356

• Bitmanip: 47

• Krypto-scalar: 85

• P-DSP: 318

For RV64 that is 967 instructions. Each instruction requires

coverpoints and covergroups, taking a few 10s of lines of code.

So that means perhaps 10000 to 40000 lines of code to be

written and tested. It’s important to note that this coverage code

is not specific to any processor implementation, it is defined by

the ISA specification and should be resuable. While it is

possible to manually create coverage points, if these are closely

coupled to the RTL design, they are unlikely to be portable

between projects and the manual nature of creating them means

they will have their own need to be debugged and validated.

The second category of functional coverage code addresses

custom core features such as privilege ISA items, interrupts,

debug block, pipeline, custom extensions and CSRs. These

covergroups and coverpoints are specific to the processor’s

implementation and have a lower potential for reuse.

OpenHW group has created an Advanced RISC-V Verification

Methodology (ARVM) working group [12] to develop and

review an approach for functional coverage for RISC-V. As

part of this group, Imperas proposes an approach where the

coverage for the ISA can be automatically generated from a

machine-readable description of the RISC-V ISA. The

coverage data is sampled from the RVVI-TRACE interface,

making it seamless to use in any project that has an RVVI-

compliant tracer (see Figure 7). This approach is design

agnostic and can be used with the previously described lock-

step-compare simulation to ensure operation is correct at the

same time as coverage data is captured. Imperas has made

functional coverage for the RV32I base ISA available via the

RISC-V ISACOV project on GitHub[13], with additional

coverage for other extensions being available under a

commercial license.

Figure [7] shows how data sampled by RVVI-TRACE can be

used to measure coverage.

The Imperas approach avoids both the manual effort and high

potential for error involved in developing a large amount of

functional coverage code. This approach allows for better reuse

and is much more scalable. Using riscvISACOV it is easy to

select the appropriate coverage points to match the design

configuration (ie RV32 vs RV64, which ISA extensions are

chosen etc).

V. FUTURE WORK

The CORE-V-VERIF verification environment continues to

evolve both in response to new requirements from new cores

and to on-going learnings from current and previous

verification efforts. The OpenHW repository of cores continues

to grow, with a recent contribution being an applications core

from Harvey Mudd College. The methodology described above

is being applied to the core and it has already found a number

of bugs.

For functional coverage, the plan is to extend this to include

CSRs and data hazards. Testing the Havey Mudd core will also

allow for development of coverage for complex areas such as

Memory Management Unit (MMU) and other features found in

applications cores.

VI. SUMMARY

The OpenHW Group’s Verification task group has been a

pioneer in the field of RISC-V processor verification. Through

the CORE-V-VERIF environment we have employed different

approaches and evaluated the merits and shortcomings of each.

With each generation the CORE-V-VERIF environment has

improved to become more robust, more reusable, and ultimately

better at finding RTL bugs. The current generation of CORE-

V-VERIF uses RISC-V processor verification IP enabled by the

RVVI to realize a comprehensive verification methodology that

encompasses asynchronous peripheral events that occur

www.embedded-world.eu

randomly during program execution. This is the state of the art

methodology at present, however the verification task group

members are highly motivated to continue to innovate and

advance the practice of RISC-V processor verification.

VII. ACKNOWLEDGMENTS

The authors would like to recognize the participation and

contribution to this work of several of the OpenHW Group

collaborators: Simon Davidmann and Aidan Dodds of Imperas

Software, Greg Tumbush of EM Microelectronics, Steve

Richmond, formerly of Silicon Labs, and Dolphin Design.

VIII. REFERENCES

[1] https://semiwiki.com/eda/324443-the-state-of-ic-and-asic-functional-
verification/

[2] https://github.com/openhwgroup/core-v-cores
[3] https://github.com/openhwgroup/core-v-verif
[4] https://docs.openhwgroup.org/projects/core-v-

verif/en/latest/quick_start.html
[5] https://en.wikipedia.org/wiki/OVPsim
[6] https://www.imperas.com/
[7] Jump Start your RISCV project with OpenHW. DVCon US, March 1-4,

2021 (Virtual) - https://www.imperas.com/articles/dvcon-2021-paper-
jump-start-your-riscv-project-openhw

[8] https://github.com/SymbioticEDA/riscv-formal/blob/master/docs/rvfi.md

[9] https://docs.openhwgroup.org/projects/cv32e40x-user-
manual/en/latest/rvfi.html

[10] RISC-V Verification Interface - https://github.com/riscv-
verification/RVVI

[11] https://github.com/openhwgroup/cv32e40x/issues/665

[12] OpenHW group Advanced RISCV Verification methodology

https://github.com/openhwgroup/programs/tree/master/TGs/verification-task-
group/projects

[13] RISC-V ISAcov https://github.com/riscv-verification/riscvISACOV

https://github.com/openhwgroup/core-v-cores
https://github.com/openhwgroup/core-v-verif
https://docs.openhwgroup.org/projects/core-v-verif/en/latest/quick_start.html
https://docs.openhwgroup.org/projects/core-v-verif/en/latest/quick_start.html
https://en.wikipedia.org/wiki/OVPsim
https://www.imperas.com/
https://github.com/SymbioticEDA/riscv-formal/blob/master/docs/rvfi.md
https://docs.openhwgroup.org/projects/cv32e40x-user-manual/en/latest/rvfi.html
https://docs.openhwgroup.org/projects/cv32e40x-user-manual/en/latest/rvfi.html
https://github.com/riscv-verification/RVVI
https://github.com/riscv-verification/RVVI
https://github.com/openhwgroup/cv32e40x/issues/665
https://github.com/openhwgroup/programs/tree/master/TGs/verification-task-group/projects
https://github.com/openhwgroup/programs/tree/master/TGs/verification-task-group/projects
https://github.com/riscv-verification/riscvISACOV

