An Introduction to RISC-V Processor Verification

Larry Lapides
14 March 2023
The RISC-V Disconnect

RISC-V
The RISC-V Disconnect

RISC-V Core User
Expects core quality to be the same as Arm

RISC-V Core Developer
Unlikely to have resources needed to be able to develop all the technologies required to perform the same level of verification as Arm
Agenda

• Verification plan
• Methodology choices
• Key technical pieces
• Putting it together: results
• Summary
Agenda

• Verification plan
• Methodology choices
• Key technical pieces
• Putting it together: results
• Summary
Verification Plan

• The obvious starting point, but often neglected
• With processor DV 5x more difficult than SoC DV*, you have to have a plan
 • SoC development without processor: 1:1 DV engineers to designers
 • Processor development: 5:1 DV engineers to designers

• What are the metrics for success?
• What resources are available, both people and tools?
• What methodology/methodologies will be used?

* Harry Foster, 2022 verification report, presented at DVCon 2023
Agenda

• Verification plan
• Methodology choices
• Key technical pieces
• Putting it together: results
• Summary
5 Levels of RISC-V Processor DV Methodology

1) Hello World
2) Self-checking tests (e.g. Berkeley torture tests pre-2018)
3) Post-simulation trace log file compare
4) Synchronous step-and-compare
5) Asynchronous continuous compare
5 Levels of RISC-V Processor DV Methodology

1) Hello World
2) Self-checking tests (e.g. Berkeley torture tests pre-2018)
3) Post-simulation trace log file compare
4) Synchronous step-and-compare
5) Asynchronous continuous compare
3) Post-Simulation Trace Log File Compare (Entry Level DV)

- **Process**
 - use random generator (ISG) to create tests
 - during simulation of ISS write trace log file
 - during simulation of RTL write trace log file
 - at the end of both runs, run logs through compare program to see differences / failures

- **ISS: riscvOVPsimPlus includes Trace and GDB interface**
 - Free ISS: https://www.ovpworld.org/riscvOVPsimPlus

- **ISG: riscv-dv from Google Cloud / Chips Alliance**
 - Free ISG: https://github.com/google/riscv-dv
Async Continuous Compare (Highest Quality DV Methodology)

- Asynchronous events are driven into the DUT
- Tracer informs reference model about async events
- Verification IP handles async event predictive engine, scoring, comparison, pass/fail

 Asynchronous continuous compare methodology is needed to support features such as interrupts, privilege modes, Debug mode, multi-hart, multi-issue and OoO pipeline, ...
Agenda

• Verification plan
• Methodology choices
• **Key technical pieces**
• Putting it together: results
• Summary
RISC-V Processor DV Components

- Reference model needed for comparison of correct behavior
- Verification IP provides ease of use, saves time and resources
- RVVI standard provides communication between test bench and reference model subsystem
- Functional coverage modules
- Test stimuli: potentially both directed and constrained random
- DUT with “Tracer” module for extraction of data from the RTL
 - Tracer is not hardware trace implementation
 - Tracer is monitor in RTL for DV purposes
Reference Model Needs to Support the Spec, Enable Custom Instructions, Be High Quality

- Imperas develops and maintains Base Model
 - Base Model implements RISC-V specification in full
 - Fully user configurable to select which ISA extensions
 - Fully user configurable to select which version of each ISA extension
 - Base Model built using Test Driven Development methodology
 - Built using public APIs matured over 15 different ISAs

- Imperas provides methodology to easily extend base model
 - Custom instructions added using same APIs as in Base Model
 - Separate source files and no duplication to ensure easy maintenance
 - 100+ page user guide/reference manual with many examples
 - User extension source can be proprietary (Apache 2.0 open source license)

- **RISC-V Base Model is used in all Imperas RISC-V processor models**
- **RISC-V Base Model is used by > 150 organizations**
Verification IP

- Data prep for functional coverage
- Data movement from SystemVerilog to C verification IP
- Logging data

- Reference model encapsulation
- Includes DUT reference state storage
- Includes synchronization technology
 - Can run sync, async, interrupts, debug, multi-hart
- Predictive engine is key for asynchronous event DV
- Includes comparison technology
 - Comparisons are done on DUT/Reference Model processor events; enables DV of multi-issue and OoO pipeline processors
Open Standard RISC-V Verification Interface: RVVI

- Work has evolved over 3 years through collaboration with community
- Standardize communication between testbench and RISC-V VIP
- **RVVI-TRACE**: signal level interface to RISC-V VIP
 - SystemVerilog interface
 - Defines information to be extracted by RTL Tracer
- **RVVI-API**: function level interface to RISC-V VIP
 - C language APIs to support Verification IP
 - State information, stepping, compares, ...

[Diagram of testbench and interfaces]

https://github.com/riscv-verification/RVVI
Building functional coverage is a lot of work
- 10-40 lines of SystemVerilog for each instruction => minimum of 10K lines of code
- Then need crosses, etc.

- Imperas riscvISACOV provides functional coverage modules for the basic RISC-V instructions
- Imperas tools can automatically generate functional coverage code for custom instructions

Functional coverage results displayed in Synopsys Verdi
Test Stimuli

• Instruction Stream Generator (ISG) and/or directed tests

• ISG generates test programs using constrained random approach
 • Most often obtain the ISG:
 • Commercial such as Valtrix STING
 • Open source such as Google riscv-dv
 • Require toolchains like GCC, LLVM for assemblers, linkers
 • Require functional coverage so that you know what you’ve tested!

• Directed tests
 • Free Imperas architectural validation test suites (50+), including RV32/64 I, M, C, F, D, B, K, V, P
 • https://github.com/riscv-ovpsim/imperas-riscv-tests
 • Imperas commercial directed test suites for vector extension, protected memory components
 • RISC-V Intl compliance tests
Interactive Co-Debug is Enabled by ImperasDV Flow

Interactive co-debug, especially valuable for asynchronous events and to investigate compare failures
Agenda

• Verification plan
• Methodology choices
• Key technical pieces
• **Putting it together: results**
• Summary
RISC-V Processor DV Results

- OpenHW Core-V-Verif
 - OpenHW users now on 3rd generation of Core-V-Verif DV flow
 - CV32E40P successfully taped out
 - CV32E40Pv2, CV32E40S, CV32E40X, CV32E20 using this flow today; all expected to complete DV this year

- Other successful DV projects using Imperas include Codasip, MIPS, Nagra, NSITEXE, Nvidia Networking, ...
Agenda

• Verification plan
• Methodology choices
• Key technical pieces
• Putting it together: results
• Summary
Imperas RISC-V Customers and Partners

Most RISC-V processor projects use Imperas

Users
- Marvell Semiconductor
- Nvidia Networking (Mellanox)
- NXP
- Silicon Labs
- Seagate
- Nagravision
- Dolphin Design
- lowRISC (Ibex)
- EM Micro US
- Top 10 semiconductor company with embedded, GPU use cases
- Top-tier systems company (AI application)
- Largest automotive ADAS/AI company
- Startup building accelerator based on multiprocessor RV64
- Japanese government projects “TRASIO” and “RVSPF”
- Numerous universities around the world
- 100+ organizations using free riscvOVPsimPlus

Processor IP Partners
- RISC-V Intl
- Andes
- Cobham Gaisler
- Codasip
- Imagination
- Intel FPGA
- MIPS
- Microchip
- NSITEXE
- OpenHW Group (Imperas is chair of the verification task group)
- SiFive
- Ventana

Tool Partners
- Breker
- Cadence (Palladium integration)
- Google (open source ISG)
- Synopsys
- Valtrix (test generation tools)
riscvOVPsimPlus / riscvISATESTS: University & Research Lab Users

Downloaders from OVPworld of riscvOVPsimPlus / riscvISATESTS (21-feb-2023)
ImperasDV Solves the RISC-V Disconnect

- Verification is the key to the success of the RISC-V processor development projects
- RISC-V processor DV methodology has been evolved by Imperas, together with customers and partners
- Tool costs will be small compared with the engineering resource costs
- Successful, experienced management teams are aware of this and executing on this basis
- ImperasDV solutions provide products to accelerate building a robust DV environment
Thank you

Larry Lapides
LarryL@imperas.com