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Abstract— As the RISC-V Instruction Set Architecture (ISA) 

matures, and SoCs are developed using RISC-V, there is a need to 

address the new verification challenges of RISC-V based SoCs. For 

SoCs built using traditional processor cores, the verification tasks 

are well known, as the starting point is based on the assumption of 

“known good IP.” The new verification challenges include 

verification of the RISC-V processor IP; verification of the 

processing element (PE) containing the RISC-V core(s) (especially 

relevant in SoCs with a fabric designed for AI processing); 

connection of the processor itself or the PE to the network on chip 

(NoC) and multiple PEs communicating through the NoC to each 

other. In this paper, the verification challenges for RISC-V SoCs 

are presented.  Specific verification flows including new test and 

instruction stream generators, reference models and metrics are 

presented in detail including the results of using these flows on real 

processor IP and SoCs.   
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I.  INTRODUCTION 

As the RISC-V Instruction Set Architecture (ISA) 
matures, and SoCs start to be developed using 
RISC-V, the development community needs to start 
addressing the challenges of RISC-V based SoCs.  
Chief among these challenges are those related to 
verification.   

For SoCs built using traditional processor cores 
from vendors such as Arm and MIPS, the verification 
tasks are well known.  The starting point for 
verification is based on the assumption of processor 
IP that has been exhaustively tested, and is assumed 
to require no additional verification when received 
from the processor IP vendor.  There is still a lot of 
work to be done to verify a SoC to the point of 
acceptability for tape out, and the scalability 
problems for dealing with the size and complexity of 
the full SoC are still there, but these are known issues.   

With RISC-V there are possibly four new 
verification challenges to address for SoC projects:  
1) verification of the RISC-V processor IP; 2) 
verification of the Processing Element (PE) 
containing the RISC-V core(s) (especially relevant in 
SoCs with a fabric designed for AI processing); 3) 
connection of the processor itself or the PE to the 
network on chip (NoC); and 4) multiple PEs 
communicating through the NoC to each other.   

For the processor core verification, three different 
scenarios exist:  the processor IP (RTL) can be 
purchased from one of the many processor IP vendors 
in the RISC-V community, the processor IP can be 
downloaded from one of the open source repositories 
or the SoC developer can build the processor RTL 
from scratch.  In the first two situations, there will 
have been a significant amount of verification 
performed on the processor IP; however, it is almost 
a certainty that the processor IP will have less 
verification and less maturity than a core from a 
traditional processor IP vendor.  Also, if custom 
instructions are added to the core, no matter the 
source of the original RTL the core needs to be 
thoroughly verified for both the new features and to 
confirm the original base core quality has not been 
compromised.   

In many AI (Artificial Intelligence) architectures, 
the design is structured in a hierarchy with a 
processing element consisting of one or more CPUs, 
plus AI accelerators or co-processor(s), plus some 
additional logic to connect to the SoC AI fabric.  This 
is a critical feature to support the desired applications, 



and offers convenient abstraction levels to align the 
verification methods.   

Next, while the processor IP and PE have been 
verified, and the NoC has been verified (assuming 
that an existing NoC IP is used), the interaction of the 
RISC-V processor, PE and the NoC is unique to the 
design and requires verification. 

Last, while the verification of a single PE is 
needed, verifying multiple PEs working with each 
other through the NoC is also needed.  This is 
especially true in the case of designs based on 
RISC-V, since the Open ISA flexibility allows for 
optimization of each of the cores, so all the various 
combinations of PEs will need verification as well. 

These verification challenges can be addressed 
within the general framework of UVM verification 
methodology and tools, however, some innovation is 
needed, along with collaboration between processor 
IP vendors, EDA vendors, other tool developers and 
the RISC-V SoC developers.  For example, several 
test generation and instruction stream generation 
tools have been developed to address RISC-V 
specific requirements, and new directed test suites 
have been developed for specific RISC-V extensions 
such as the vector instructions.  New reference 
models are needed for the RISC-V processors and 
PEs.  New metrics are needed, especially for the 
processor and PE verification areas, perhaps such as 
instruction coverage.  Flows with these tools need to 
be robust to handle the variety of processor IP 
scenarios elaborated above.  Plus, a robust flow is 
needed to ensure that a solitary “bad actor” does not 
insert a backdoor into the processor or SoC.   

Other areas that are being looked at to address 
RISC-V SoC verification include using hybrid 
emulation-virtual platform systems for hardware-
software co-verification, using Portable Stimulus 
(PSS) for multiple PE and full chip verification, and 
using the nature of the AI algorithms to constrain the 
SoC state space.   

In this paper, the verification challenges for 
RISC-V SoCs are discussed and an overview given 
of potential solutions.  Specific verification flows 
including new test and instruction stream generators, 
and reference models and metrics, are presented in 
detail including the results of using these flows on 
real processor IP and SoC designs.   

II. COMPLIANCE IS NOT VERIFICATION 

With RISC-V, as an open ISA specification [1], 

any implementation will need to be tested against the 

latest RISC-V compliance suite.  

The objective of the compliance process is to 

ensure that implementations are correctly following 

the specifications, with the expectation that 

compliant devices will exhibit sufficient 

compatibility to leverage the emerging ecosystem for 

tools and software. Put more simply, compliance is 

confirming that the designers have understood the 

specifications. Since the ISA specification does not 

include details of microarchitecture, differences in 

device performance and application focus are 

expected and of course permitted.  

Since the compliance tests use expected 

functionality as the basis of the test suite, this incurs 

an overlap with some aspects of Design Verification 

(DV). However, the compliance suite is not 

exhaustive for all functionality and is focused purely 

with the structural specification aspects of the ISA, 

i.e. compliance is a subset of DV.  

The RISC-V Compliance Suite is developed 

within the RISC-V Foundation Working Group on 

Compliance (“Compliance WG”), and the latest test 

suites are available from the RISC-V compliance 

GitHub repository [2].  

III. CUSTOM INSTRUCTIONS AND REFERENCE 

MODELS 

A reference model is a key to processor-related 
DV tasks.  This is usually an instruction accurate (IA) 
model of the processor, often called an Instruction Set 
Simulator (ISS).  The Compliance WG GitHub 
repository includes the riscvOVPsim ISS.  The 
riscvOVPsim simulator implements the full and 
complete functionality of the RISC-V Foundation’s 
public Unprivileged (formally known as User) and 
Privilege ratified specifications.  The simulator is 
command line configurable to enable/disable all 
current optional and processor specific options in the 
RISC-V specification.  The simulator is developed, 
licensed and maintained by Imperas Software Ltd., 
and is fully compliant to the Open Virtual Platforms 
(OVP) [3] open standard APIs.  Most recently, 
support for the vector and bit manipulation 
instructions were added to the OVP RISC-V 
processor models.   
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When custom instructions are added to the 
RISC-V processor, those instructions need to be 
added to the reference model.  Imperas has previously 
developed a methodology for adding and optimizing 
custom instructions [4].  This flow is shown in Fig. 1. 
The resulting model, which includes both the 
standard RISC-V instructions and the custom 
instructions, can then be used as a reference model for 
DV of the processor RTL.   

IV. PROCESSOR IP VERIFICATION 

There are three techniques currently being used for 
RISC-V processor verification:  directed tests, 
constrained random test generation and test 
generation and execution.   

A. Directed Tests 

Directed test suites are an established technique, 
however, what has not been previously done is the 
measurement of instruction coverage of these test 
suites. Also, with the vector extensions to the RISC-V 
ISA, the difficulty involved in building a 
comprehensive test suite is increased exponentially.  
The vector instructions have 90 different 
configurations, and nearly 100 instructions.  This is 
obviously a complex problem.   

With this paper, the authors report new instruction 
coverage metrics, with the coverage tool included in 
the ISS.  An example of the coverage results for the 
RV32I compliance test suite is shown in Fig. 2.   

The authors are also developing a directed test 
suite (“Vector Test Suite”) for the RISC-V vector 
instructions.  Data on this test suite will be available 
later this year.  

B. Constrained Random Test Generation 

Constrained random test generation for SoC DV is 
also an established technique.  However, for 
processor DV, this needs to be an Instruction Stream 
Generator (ISG).  Google has developed and made 
open source an ISG for RISC-V [5].   

Fig. 3 shows the basic flow for RISC-V processor 
DV using the ISG.  This flow was originally 
developed to use a trace or signature compare 
methodology, but is now being evolved to support a 
step-and-compare methodology using the ISS 

 
Fig. 1.  Flow for adding custom instructions to the RISC-V processor model. 

 

 

 
 

Fig. 2.  Example of instruction coverage results for the RV32I compliance 
test suite.  



encapsulated in SystemVerilog, as shown in Fig. 4.  
Fig. 5 shows the step-and-compare flow.  

This flow has been implemented for the testing of 
the Ibex core that was originally developed by ETH 
Zurich under the name “Zero-riscy” [6].  Recently 
this was adopted by LowRISC as Ibex [7].  Ibex 
implements the RISC-V RV32IMC instructions, 
which is the 32-bit RISC-V processor with integer (I), 
multiplier/divider (M) and compressed (C) 
instructions.   

Table 1 shows the different categories of bugs 
found in the Ibex processor using this approach, while 
Fig. 6 shows an example of two types of bugs found.  

Table 1.  Categories of bugs found using the ISG-based DV flow. 

Bug Category Percentage of Bugs Found 

Debug mode 31.3% 

Illegal/hint instructions 25.0% 

Interrupt 18.8% 

Memory access fault 12.5% 

Pipeline issue 6.3% 

Others 6.3% 

  

C. Test Generation and Execution 

An alternative, and complementary approach to 
test generation for processor DV, which also can be 
applied to SoC DV, is the generation of tests as an 
executable which can be run on the RTL.  In this 
approach, tests are randomly generated, then run on 
the processor reference model. The results from 
running the tests on the processor reference model are 
then combined with the random tests and used as 
reference test results.  This flow is shown in Fig. 7 
[8].   

V. PE, MUTLIPLE PE AND NOC-PE VERIFICATION 

The key pieces of SoC DV include verification of 
single PEs, verification of multiple PEs and 
verification of the interface between the PE and the 
Network on Chip (NoC).   

A. Verification of Processing Elements 

In many RISC-V based SoCs targeted at AI 
applications, the architecture includes Processing 
Elements (PEs) which have more than one RISC-V 
processor, plus an AI accelerator, plus some custom 
logic.  The custom logic is typically comprised of 
custom instructions added to the RISC-V processors, 
plus additional logic for controlling the 
communications between processors.  For these PEs, 
the individual processors (including custom 
instructions) must be verified as discussed above.  
However, with the integration of multiple processors 
into the PE, there can be different interactions that 
cannot be tested at the individual processor level.   

For this level of integration, the PE can also be 
modeled using the same instruction accurate 
techniques that were used to model individual 
processors.  The OVP APIs are used to build a model 

 
Fig. 3.  RISC-V processor DV flow with Google open source ISG and Imperas ISS as reference model.  The Metrics cloud simulation environment for 

SystemVerilog is shown in this diagram, however, any UVM-compliant SystemVerilog simulator could be used.  

 
Fig. 4.  Block diagram of SystemVerilog encapsulation of the RISC-V 

processor model. 
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of the PE, and the same SystemVerilog encapsulation 
techniques are used to encapsulate the model of the 
PE, again enabling step-and-compare verification of 
the PE RTL.   

A key piece here is the test generation.  Certainly 
constrained random test generation could work, 
however, this might spend too many cycles “re-
verifying” the individual processors and not focusing 
on the new, unique interactions at the PE level of 
integration.  Another possibility is to run actual 
software meant to execute on the real PEs.  This 
should bring out these additional interactions.   

In these AI architectures, often one PE interacts 
regularly with multiple neighbor PEs.  It is unclear 
how best to verify these PE-PE interactions.  Two 
ideas being explored now are 1) to combine the 
instruction accurate models with RTL simulation; 
and 2) to combine the instruction accurate models 

with hardware emulation.  In the first scenario, one 
might have one PE represented in RTL, and the 
remainder of the PEs as IA models.  This could enable 
the IA models to run the actual software, generating 
more interesting “stimuli” for testing the RTL PE.  In 
the second scenario, something similar to the first is 
contemplated, however, in this situation the RTL 
blocks would be implemented in the hardware 
emulator.  Such a hybrid IA simulation-emulation 
environment is shown in Fig. 7 [9].  

B. Processor/PE—NoC Verification 

Verification of the interface between a processor 
or processor subsystem and a NoC is a well-
established process.  This element of RISC-V 
verification is raised because there has been only a 
limited number of RISC-V based SoCs built using the 
various NoCs, so DV engineers should realize that 
this is not the fully mature NoC interface that one 
receives when other processor architectures are used.  

VI. CONCLUSIONS 

The RISC-V instruction set architecture is 
capturing the attention and interest of many 
companies because of its openness.  However, the 
relative lack of maturity of the RISC-V processor IP 
means that verification of the RISC-V RTL is a 
critical task for SoC development.  Also, with many 
RISC-V SoCs, additional DV needs to be done at 
higher levels of integration on the SoC.  Together, 
these DV challenges require new tools and flows to 
meet the requirements of high quality SoCs.  
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Fig. 5.  Encapsulated ISS in the SystemVerilog testbench for a step-and-compare DV flow.  

 
Fig. 6.  Examples of two types of bugs found with the ISG-based flow. 

 



REFERENCES 

[1] RISC-V Foundation ISA specification at https://riscv.org/specifications/ 

[2] RISC-V Foundation Compliance GitHub repository:  
https://github.com/riscv/riscv-compliance 

[3] OVP (Open Virtual Platforms) http://www.ovpworld.org 

[4] L. Moore, S. Davidmann, L. Lapides, “Methodology for Implementation 
of Custom Instructions in the RISC-V Architecture,” Embedded World 
2019, available at http://www.imperas.com/ew19-paper-on-
methodology-for-implementation-of-custom-instructions-in-the-risc-v-
architecture 

[5] Google ISG GitHub repository at https://github.com/google/riscv-dv 

[6] P. D. Schiavone et al. “Slow and steady wins the race? A comparison of 
ultra-low-power RISC-V cores for Internet-of-Things applications.” 27th 
International Symposium on Power and Timing Modeling, Optimization 
and Simulation (PATMOS 2017) 

[7]  Ibex by LowRISC https://github.com/lowRISC/ibex 

[8] S. R. Choudhury, Shajid T., J. John, George S., “Verifying RISC-V 
Vector and Bit Manipulation Extensions using STING Design 
Verification Tool,” RISC-V Summit 2019, https://content.riscv.org/wp-
content/uploads/2019/12/12.11-16.40b-Verifying-RISC-V-Vector-and-
Bit-Manipulation-Extensions-using-STING-Design-Verification-
Tool.pdf  

[9] K. McDermott, L. Lapides, “Fast Processor Models for Software Bring-
Up and Hardware-Software Co-Verification,” CDNLive EMEA 2019, 
paper SVG03, https://www.cadence.com/en_US/home/cdnlive/emea-
2019/proceedings.html  

  

 

 

 

 
Fig. 7.  Block diagram of a hybrid IA simulation-hardware emulation environment [9]. 

https://github.com/google/riscv-dv
https://github.com/lowRISC/ibex
https://content.riscv.org/wp-content/uploads/2019/12/12.11-16.40b-Verifying-RISC-V-Vector-and-Bit-Manipulation-Extensions-using-STING-Design-Verification-Tool.pdf
https://content.riscv.org/wp-content/uploads/2019/12/12.11-16.40b-Verifying-RISC-V-Vector-and-Bit-Manipulation-Extensions-using-STING-Design-Verification-Tool.pdf
https://content.riscv.org/wp-content/uploads/2019/12/12.11-16.40b-Verifying-RISC-V-Vector-and-Bit-Manipulation-Extensions-using-STING-Design-Verification-Tool.pdf
https://content.riscv.org/wp-content/uploads/2019/12/12.11-16.40b-Verifying-RISC-V-Vector-and-Bit-Manipulation-Extensions-using-STING-Design-Verification-Tool.pdf
https://www.cadence.com/en_US/home/cdnlive/emea-2019/proceedings.html
https://www.cadence.com/en_US/home/cdnlive/emea-2019/proceedings.html

	I.  Introduction
	II. Compliance is not Verification
	III. Custom Instructions and Reference Models
	IV. Processor IP Verification
	A. Directed Tests
	B. Constrained Random Test Generation
	C. Test Generation and Execution

	V. PE, Mutliple PE and NoC-PE Verification
	A. Verification of Processing Elements
	B. Processor/PE—NoC Verification

	VI. Conclusions
	Acknowledgment
	References


