
www.embedded-world.eu

Impact of RISC-V Adaptability on

SoC Verification Methods

Simon Davidmann, Lee Moore and Larry Lapides

Imperas Software Ltd.

Oxford, United Kingdom

larryl@imperas.com

Abstract— As the RISC-V Instruction Set Architecture (ISA)

matures, and SoCs are developed using RISC-V, there is a need to

address the new verification challenges of RISC-V based SoCs. For

SoCs built using traditional processor cores, the verification tasks

are well known, as the starting point is based on the assumption of

“known good IP.” The new verification challenges include

verification of the RISC-V processor IP; verification of the

processing element (PE) containing the RISC-V core(s) (especially

relevant in SoCs with a fabric designed for AI processing);

connection of the processor itself or the PE to the network on chip

(NoC) and multiple PEs communicating through the NoC to each

other. In this paper, the verification challenges for RISC-V SoCs

are presented. Specific verification flows including new test and

instruction stream generators, reference models and metrics are

presented in detail including the results of using these flows on real

processor IP and SoCs.

Keywords—RISC-V, Verification, Processor, SoC,

I. INTRODUCTION

As the RISC-V Instruction Set Architecture (ISA)
matures, and SoCs start to be developed using
RISC-V, the development community needs to start
addressing the challenges of RISC-V based SoCs.
Chief among these challenges are those related to
verification.

For SoCs built using traditional processor cores
from vendors such as Arm and MIPS, the verification
tasks are well known. The starting point for
verification is based on the assumption of processor
IP that has been exhaustively tested, and is assumed
to require no additional verification when received
from the processor IP vendor. There is still a lot of
work to be done to verify a SoC to the point of
acceptability for tape out, and the scalability
problems for dealing with the size and complexity of
the full SoC are still there, but these are known issues.

With RISC-V there are possibly four new
verification challenges to address for SoC projects:
1) verification of the RISC-V processor IP; 2)
verification of the Processing Element (PE)
containing the RISC-V core(s) (especially relevant in
SoCs with a fabric designed for AI processing); 3)
connection of the processor itself or the PE to the
network on chip (NoC); and 4) multiple PEs
communicating through the NoC to each other.

For the processor core verification, three different
scenarios exist: the processor IP (RTL) can be
purchased from one of the many processor IP vendors
in the RISC-V community, the processor IP can be
downloaded from one of the open source repositories
or the SoC developer can build the processor RTL
from scratch. In the first two situations, there will
have been a significant amount of verification
performed on the processor IP; however, it is almost
a certainty that the processor IP will have less
verification and less maturity than a core from a
traditional processor IP vendor. Also, if custom
instructions are added to the core, no matter the
source of the original RTL the core needs to be
thoroughly verified for both the new features and to
confirm the original base core quality has not been
compromised.

In many AI (Artificial Intelligence) architectures,
the design is structured in a hierarchy with a
processing element consisting of one or more CPUs,
plus AI accelerators or co-processor(s), plus some
additional logic to connect to the SoC AI fabric. This
is a critical feature to support the desired applications,

and offers convenient abstraction levels to align the
verification methods.

Next, while the processor IP and PE have been
verified, and the NoC has been verified (assuming
that an existing NoC IP is used), the interaction of the
RISC-V processor, PE and the NoC is unique to the
design and requires verification.

Last, while the verification of a single PE is
needed, verifying multiple PEs working with each
other through the NoC is also needed. This is
especially true in the case of designs based on
RISC-V, since the Open ISA flexibility allows for
optimization of each of the cores, so all the various
combinations of PEs will need verification as well.

These verification challenges can be addressed
within the general framework of UVM verification
methodology and tools, however, some innovation is
needed, along with collaboration between processor
IP vendors, EDA vendors, other tool developers and
the RISC-V SoC developers. For example, several
test generation and instruction stream generation
tools have been developed to address RISC-V
specific requirements, and new directed test suites
have been developed for specific RISC-V extensions
such as the vector instructions. New reference
models are needed for the RISC-V processors and
PEs. New metrics are needed, especially for the
processor and PE verification areas, perhaps such as
instruction coverage. Flows with these tools need to
be robust to handle the variety of processor IP
scenarios elaborated above. Plus, a robust flow is
needed to ensure that a solitary “bad actor” does not
insert a backdoor into the processor or SoC.

Other areas that are being looked at to address
RISC-V SoC verification include using hybrid
emulation-virtual platform systems for hardware-
software co-verification, using Portable Stimulus
(PSS) for multiple PE and full chip verification, and
using the nature of the AI algorithms to constrain the
SoC state space.

In this paper, the verification challenges for
RISC-V SoCs are discussed and an overview given
of potential solutions. Specific verification flows
including new test and instruction stream generators,
and reference models and metrics, are presented in
detail including the results of using these flows on
real processor IP and SoC designs.

II. COMPLIANCE IS NOT VERIFICATION

With RISC-V, as an open ISA specification [1],

any implementation will need to be tested against the

latest RISC-V compliance suite.

The objective of the compliance process is to

ensure that implementations are correctly following

the specifications, with the expectation that

compliant devices will exhibit sufficient

compatibility to leverage the emerging ecosystem for

tools and software. Put more simply, compliance is

confirming that the designers have understood the

specifications. Since the ISA specification does not

include details of microarchitecture, differences in

device performance and application focus are

expected and of course permitted.

Since the compliance tests use expected

functionality as the basis of the test suite, this incurs

an overlap with some aspects of Design Verification

(DV). However, the compliance suite is not

exhaustive for all functionality and is focused purely

with the structural specification aspects of the ISA,

i.e. compliance is a subset of DV.

The RISC-V Compliance Suite is developed

within the RISC-V Foundation Working Group on

Compliance (“Compliance WG”), and the latest test

suites are available from the RISC-V compliance

GitHub repository [2].

III. CUSTOM INSTRUCTIONS AND REFERENCE

MODELS

A reference model is a key to processor-related
DV tasks. This is usually an instruction accurate (IA)
model of the processor, often called an Instruction Set
Simulator (ISS). The Compliance WG GitHub
repository includes the riscvOVPsim ISS. The
riscvOVPsim simulator implements the full and
complete functionality of the RISC-V Foundation’s
public Unprivileged (formally known as User) and
Privilege ratified specifications. The simulator is
command line configurable to enable/disable all
current optional and processor specific options in the
RISC-V specification. The simulator is developed,
licensed and maintained by Imperas Software Ltd.,
and is fully compliant to the Open Virtual Platforms
(OVP) [3] open standard APIs. Most recently,
support for the vector and bit manipulation
instructions were added to the OVP RISC-V
processor models.

www.embedded-world.eu

When custom instructions are added to the
RISC-V processor, those instructions need to be
added to the reference model. Imperas has previously
developed a methodology for adding and optimizing
custom instructions [4]. This flow is shown in Fig. 1.
The resulting model, which includes both the
standard RISC-V instructions and the custom
instructions, can then be used as a reference model for
DV of the processor RTL.

IV. PROCESSOR IP VERIFICATION

There are three techniques currently being used for
RISC-V processor verification: directed tests,
constrained random test generation and test
generation and execution.

A. Directed Tests

Directed test suites are an established technique,
however, what has not been previously done is the
measurement of instruction coverage of these test
suites. Also, with the vector extensions to the RISC-V
ISA, the difficulty involved in building a
comprehensive test suite is increased exponentially.
The vector instructions have 90 different
configurations, and nearly 100 instructions. This is
obviously a complex problem.

With this paper, the authors report new instruction
coverage metrics, with the coverage tool included in
the ISS. An example of the coverage results for the
RV32I compliance test suite is shown in Fig. 2.

The authors are also developing a directed test
suite (“Vector Test Suite”) for the RISC-V vector
instructions. Data on this test suite will be available
later this year.

B. Constrained Random Test Generation

Constrained random test generation for SoC DV is
also an established technique. However, for
processor DV, this needs to be an Instruction Stream
Generator (ISG). Google has developed and made
open source an ISG for RISC-V [5].

Fig. 3 shows the basic flow for RISC-V processor
DV using the ISG. This flow was originally
developed to use a trace or signature compare
methodology, but is now being evolved to support a
step-and-compare methodology using the ISS

Fig. 1. Flow for adding custom instructions to the RISC-V processor model.

Fig. 2. Example of instruction coverage results for the RV32I compliance
test suite.

encapsulated in SystemVerilog, as shown in Fig. 4.
Fig. 5 shows the step-and-compare flow.

This flow has been implemented for the testing of
the Ibex core that was originally developed by ETH
Zurich under the name “Zero-riscy” [6]. Recently
this was adopted by LowRISC as Ibex [7]. Ibex
implements the RISC-V RV32IMC instructions,
which is the 32-bit RISC-V processor with integer (I),
multiplier/divider (M) and compressed (C)
instructions.

Table 1 shows the different categories of bugs
found in the Ibex processor using this approach, while
Fig. 6 shows an example of two types of bugs found.

Table 1. Categories of bugs found using the ISG-based DV flow.

Bug Category Percentage of Bugs Found

Debug mode 31.3%

Illegal/hint instructions 25.0%

Interrupt 18.8%

Memory access fault 12.5%

Pipeline issue 6.3%

Others 6.3%

C. Test Generation and Execution

An alternative, and complementary approach to
test generation for processor DV, which also can be
applied to SoC DV, is the generation of tests as an
executable which can be run on the RTL. In this
approach, tests are randomly generated, then run on
the processor reference model. The results from
running the tests on the processor reference model are
then combined with the random tests and used as
reference test results. This flow is shown in Fig. 7
[8].

V. PE, MUTLIPLE PE AND NOC-PE VERIFICATION

The key pieces of SoC DV include verification of
single PEs, verification of multiple PEs and
verification of the interface between the PE and the
Network on Chip (NoC).

A. Verification of Processing Elements

In many RISC-V based SoCs targeted at AI
applications, the architecture includes Processing
Elements (PEs) which have more than one RISC-V
processor, plus an AI accelerator, plus some custom
logic. The custom logic is typically comprised of
custom instructions added to the RISC-V processors,
plus additional logic for controlling the
communications between processors. For these PEs,
the individual processors (including custom
instructions) must be verified as discussed above.
However, with the integration of multiple processors
into the PE, there can be different interactions that
cannot be tested at the individual processor level.

For this level of integration, the PE can also be
modeled using the same instruction accurate
techniques that were used to model individual
processors. The OVP APIs are used to build a model

Fig. 3. RISC-V processor DV flow with Google open source ISG and Imperas ISS as reference model. The Metrics cloud simulation environment for

SystemVerilog is shown in this diagram, however, any UVM-compliant SystemVerilog simulator could be used.

Fig. 4. Block diagram of SystemVerilog encapsulation of the RISC-V

processor model.

www.embedded-world.eu

of the PE, and the same SystemVerilog encapsulation
techniques are used to encapsulate the model of the
PE, again enabling step-and-compare verification of
the PE RTL.

A key piece here is the test generation. Certainly
constrained random test generation could work,
however, this might spend too many cycles “re-
verifying” the individual processors and not focusing
on the new, unique interactions at the PE level of
integration. Another possibility is to run actual
software meant to execute on the real PEs. This
should bring out these additional interactions.

In these AI architectures, often one PE interacts
regularly with multiple neighbor PEs. It is unclear
how best to verify these PE-PE interactions. Two
ideas being explored now are 1) to combine the
instruction accurate models with RTL simulation;
and 2) to combine the instruction accurate models

with hardware emulation. In the first scenario, one
might have one PE represented in RTL, and the
remainder of the PEs as IA models. This could enable
the IA models to run the actual software, generating
more interesting “stimuli” for testing the RTL PE. In
the second scenario, something similar to the first is
contemplated, however, in this situation the RTL
blocks would be implemented in the hardware
emulator. Such a hybrid IA simulation-emulation
environment is shown in Fig. 7 [9].

B. Processor/PE—NoC Verification

Verification of the interface between a processor
or processor subsystem and a NoC is a well-
established process. This element of RISC-V
verification is raised because there has been only a
limited number of RISC-V based SoCs built using the
various NoCs, so DV engineers should realize that
this is not the fully mature NoC interface that one
receives when other processor architectures are used.

VI. CONCLUSIONS

The RISC-V instruction set architecture is
capturing the attention and interest of many
companies because of its openness. However, the
relative lack of maturity of the RISC-V processor IP
means that verification of the RISC-V RTL is a
critical task for SoC development. Also, with many
RISC-V SoCs, additional DV needs to be done at
higher levels of integration on the SoC. Together,
these DV challenges require new tools and flows to
meet the requirements of high quality SoCs.

ACKNOWLEDGMENT

The authors wish to thank Richard Ho and Tao Liu
of Google LLC for their help with the Google ISG.

Fig. 5. Encapsulated ISS in the SystemVerilog testbench for a step-and-compare DV flow.

Fig. 6. Examples of two types of bugs found with the ISG-based flow.

REFERENCES

[1] RISC-V Foundation ISA specification at https://riscv.org/specifications/

[2] RISC-V Foundation Compliance GitHub repository:
https://github.com/riscv/riscv-compliance

[3] OVP (Open Virtual Platforms) http://www.ovpworld.org

[4] L. Moore, S. Davidmann, L. Lapides, “Methodology for Implementation
of Custom Instructions in the RISC-V Architecture,” Embedded World
2019, available at http://www.imperas.com/ew19-paper-on-
methodology-for-implementation-of-custom-instructions-in-the-risc-v-
architecture

[5] Google ISG GitHub repository at https://github.com/google/riscv-dv

[6] P. D. Schiavone et al. “Slow and steady wins the race? A comparison of
ultra-low-power RISC-V cores for Internet-of-Things applications.” 27th
International Symposium on Power and Timing Modeling, Optimization
and Simulation (PATMOS 2017)

[7] Ibex by LowRISC https://github.com/lowRISC/ibex

[8] S. R. Choudhury, Shajid T., J. John, George S., “Verifying RISC-V
Vector and Bit Manipulation Extensions using STING Design
Verification Tool,” RISC-V Summit 2019, https://content.riscv.org/wp-
content/uploads/2019/12/12.11-16.40b-Verifying-RISC-V-Vector-and-
Bit-Manipulation-Extensions-using-STING-Design-Verification-
Tool.pdf

[9] K. McDermott, L. Lapides, “Fast Processor Models for Software Bring-
Up and Hardware-Software Co-Verification,” CDNLive EMEA 2019,
paper SVG03, https://www.cadence.com/en_US/home/cdnlive/emea-
2019/proceedings.html

Fig. 7. Block diagram of a hybrid IA simulation-hardware emulation environment [9].

https://github.com/google/riscv-dv
https://github.com/lowRISC/ibex
https://content.riscv.org/wp-content/uploads/2019/12/12.11-16.40b-Verifying-RISC-V-Vector-and-Bit-Manipulation-Extensions-using-STING-Design-Verification-Tool.pdf
https://content.riscv.org/wp-content/uploads/2019/12/12.11-16.40b-Verifying-RISC-V-Vector-and-Bit-Manipulation-Extensions-using-STING-Design-Verification-Tool.pdf
https://content.riscv.org/wp-content/uploads/2019/12/12.11-16.40b-Verifying-RISC-V-Vector-and-Bit-Manipulation-Extensions-using-STING-Design-Verification-Tool.pdf
https://content.riscv.org/wp-content/uploads/2019/12/12.11-16.40b-Verifying-RISC-V-Vector-and-Bit-Manipulation-Extensions-using-STING-Design-Verification-Tool.pdf
https://www.cadence.com/en_US/home/cdnlive/emea-2019/proceedings.html
https://www.cadence.com/en_US/home/cdnlive/emea-2019/proceedings.html

	I. Introduction
	II. Compliance is not Verification
	III. Custom Instructions and Reference Models
	IV. Processor IP Verification
	A. Directed Tests
	B. Constrained Random Test Generation
	C. Test Generation and Execution

	V. PE, Mutliple PE and NoC-PE Verification
	A. Verification of Processing Elements
	B. Processor/PE—NoC Verification

	VI. Conclusions
	Acknowledgment
	References

