Virtual Platform Based Development Environments for Low Power, Mixed Level Safety Critical System

D. Graham and L. Lapides, Imperas Software Ltd.
S. Schreiner and K. Grüttner, OFFIS
Acknowledgement:
This work was partially funded by the SAFEPOWER project under the EU Horizon2020 programme

http://safepower-project.eu

The authors give their thanks to all the organizations that participated in SAFEPOWER, both universities and commercial companies
Agenda

• Safety and security in embedded systems
• SAFEPOWER architecture
• Virtual platform environment
• SAFEPOWER platform: Xilinx Zynq 7000
• Virtual platform challenges and solutions
• Results
• Summary
Agenda

• Safety and security in embedded systems
• SAFEPOWER architecture
• Virtual platform environment
• SAFEPOWER platform: Xilinx Zynq 7000
• Virtual platform challenges and solutions
• Results
• Summary
Safety and Security in Embedded Systems

- More processors per SoC is being driven by demand for bigger, faster, more efficient systems
- Initial architectures just consolidated smaller SoCs into a larger SoC with minimal sharing of resources
 - This satisfies performance and domain isolation (for safety and security critical uses) requirements
 - Power consumption becomes a real issue, in terms of reliability and cooling costs
Mixed Criticality Systems

• Definition: an embedded system comprised of hardware, operating system (OS), middleware services and application software with multiple levels of criticality

• Mixed criticality systems are seen in multiple market segments including automotive, avionics, industrial controls, medical electronics

• The architecture of many of these systems uses the OS and/or a hypervisor to realize partitioning between the domains with differing levels of criticality
 • In this situation, the OS or hypervisor implementing the partitioning needs to be certified at the same criticality level as the most critical application
Agenda

• Safety and security in embedded systems
• SAFEPOWER architecture
• Virtual platform environment
• SAFEPOWER platform: Xilinx Zynq 7000
• Virtual platform challenges and solutions
• Results
• Summary
SAFEPOWER Reference Architecture

- SLP: Static Low-Power block
- PSI: Power Services Interface
- Hypervisor partitions for Power Monitoring App, User App #1, User App #2, ...
- Tile “partitions” for Bare-metal Tile #1, Bare-metal Tile #2, ...
SAFEPOWERS Reference Architecture

• Tile-based architecture
• Connected via time-triggered Network on Chip (NoC)
• Tiles are managed by a Type-1 hypervisor
 • Allows for an arbitrary amount of user partitions
 • Low-Power Monitoring Partition: Special partition on the hypervisor for monitoring and controlling power management services
 • Includes time-triggered task management
• Bare-metal tiles are not directly managed by the hypervisor
 • Connected to the time-triggered NoC
 • Implements a light version of the hypervisor application interface
 • Time-triggered behavior is executed based on a pre-computed communication schedule that triggers the message injection times
• Achieves both the spatial isolation and temporal independence required in safety standards such as IEC-61508
• Time triggered architecture provides deterministic scheduling of software tasks, with Worst Case Execution Time (WCET) analysis supporting the achievement of timing requirements
Agenda

• Safety and security in embedded systems
• SAFEPOWER architecture
 • Virtual platform environment
• SAFEPOWER platform: Xilinx Zynq 7000
• Virtual platform challenges and solutions
• Results
• Summary
Imperas Environment for Embedded Software Development, Debug & Test

Application Software & Operating System

Virtual Platform (OVP models)
- Peripherals
- Memory
- CPU

JIT simulator engine

Software Verification, Analysis & Profiling (VAP) tools
- Trace
- Profile
- Code coverage
- Memory monitor
- Protocol checker
- Assertion checkers

Multiprocessor / Multicore Debugger

Eclipse IDE

SlipStreamer API

• OS task tracing
• OS scheduler analysis
• Fault injection
• Function tracing
• Variable tracing
• ...

Page 11 © 2020 Imperas Software Ltd.
Virtual Platform

• Models
 • Existing models from the Open Virtual Platforms (OVP) Library used, if available
 • Models of Arm, MicroBlaze processors
 • Various non-processor models
 • New models built using OVP APIs as required
 • Network Interface (NI)
 • Various peripheral components
 • Hierarchical, parameterized platform
 • Models are open source (http://www.ovpworld.org)

• Simulator product is Imperas M*SDK
 • Instruction accurate simulator engine (~250 million instructions per second performance)
 • MultiProcessor Debugger (MPD) for platform-centric debug
 • Verification, Analysis and Profiling (VAP) tools
Agenda

• Safety and security in embedded systems
• SAFEPOWER architecture
• Virtual platform environment
 • SAFEPOWER platform: Xilinx Zynq 7000
• Virtual platform challenges and solutions
• Results
• Summary
SafePower Platform

- Objective was to build the platform as both real hardware and a virtual platform
- Based upon the Xilinx Zynq 7000 board
- Processing System (PS)
 - Static hardware block including ARM Cortex-A9MPx2 processor
- Programmable Logic (PL)
 - Define any components and interconnects
 - MicroBlaze processors
 - Network-on-Chip nodes and interconnect
 - Memory
 - Can create and dynamically load any PL definition
- Interconnect
 - Fixed Connectivity between PS and PL
 - Address-mapped data and GPIO
- Power Control and Monitor
 - Power monitoring devices
 - Set voltages and obtain feedback of current values
 - Clock control
 - Dynamically change processor clock frequency – Dynamic Voltage and Frequency Scaling (DVFS)
Hypervisor is XtratuM from FentISS

- Supports time-triggered task management
- Supports special partitions for system-level apps such as power monitoring and management
Xilinx Zynq Virtual Platform Hierarchy

Harness

Zynq Processing Sub-system

slcr
Ethernet MAC
devcfg

Flash Controller

Memory Controller

uartps

Memory

Zynq Programmable Logic

Zynq Processing Sub-system

slcr
Ethernet MAC
devcfg

Flash Controller

Memory Controller

uartps

Memory

Zynq Programmable Logic

Zynq Harness

Smartloader
Visualization I/F
Agenda

• Safety and security in embedded systems
• SAFEPOWER architecture
• Virtual platform environment
• SAFEPOWER platform: Xilinx Zynq 7000
 • Virtual platform challenges and solutions
• Results
• Summary
Virtual Platform Challenges

1) How to model DVFS
2) Fault injection testing environment
3) Support for time-triggered system
1) DVFS Implementation Uses Power Intercept Library
Virtual Power Sensor

- **Power Sensor** is represented by an intercepted I²C interface
- **Power Model** gets new voltage values and returns power values
- **That means**: Next to the frequency configuration the application is able to configure the voltages and to request the present power values
Executing Linux in VP with Attached Power Model

- Virtual Platform (VP) executes Linux and Power Model recognizes changes:
 - Core frequencies are reconfigured to 333MHz
 - RAM frequency is configured to 533MHz
- Power Model reconfigures MIPS rate of both cores
2) Fault Injection

- Fault injection framework should
 - Include different faults and fault campaigns
 - Apply simulation time to trigger injection of faults

- Faults implemented
 - Memory corruption
 - Memory monitoring and corruption
 - GPIO corruption
 - Switch partition scheduler
 - Reset CPUx
 - Uncontrolled interrupt
Fault Injection Execution Modes

- Intercept library
- Intercept library + configuration file
- Sequential execution of faults
- HTML based user interface
3) Simulation: Time-Triggered Scheduling

- Default simulation scheduler
 - Round-robin scheduling of processor execution
 - Functionally correct but limited timing reference
- SAFEPOWER is a time-triggered system
 - Timing synchronisation defined statically
 - Time triggers do not align with simulation quanta
- Solution: Develop time-triggered scheduler
 - Applications are executed until reach next event
 - Execution scheduled to complete “work”
 - Detect points in application for synchronisation events
Agenda

• Safety and security in embedded systems
• SAFEPOWER architecture
• Virtual platform environment
• SAFEPOWER platform: Xilinx Zynq 7000
• Virtual platform challenges and solutions
 • Results
 • Summary
Evaluation

- Railway and avionics use cases implemented
- Evaluate the functionality and timing with and without low power techniques on both the virtual platform and hardware platform

Objectives
- Demonstrate that the software components interact correctly with each other and with the hardware
- Verify that the entire system complies with the requirements – functional and extra-functional, also when including low power techniques – of the use case specification
- Show that power savings can be reached for safety critical applications in different domains
SAFEPOWER Avionics Use Case

- Hypervisor partitions for Power Monitoring App, Maintenance Record System, ...
- Tile “partitions” for Actuators, Flight CTRL System, Flight CTRL System & LDU
Virtual Platform Results

• Virtual platform results were equivalent to hardware based results for the tests that could be run on both platforms
 • Virtual platform uses the same binaries, and so can be utilized in test and certification of safety critical applications

• Virtual platform provided benefits over the hardware platform for development, debug, analysis and verification of software applications

 1) Execution control: Simulation is deterministic
 2) Unified debug environment: Simultaneous debug of all application code executing on all processors in the platform, including access to peripherals
 • Analysis tools such as profiling, code coverage, dynamic assertions, etc. are implemented non-intrusively: no modification or instrumentation of source code required
 • Power Interface Library, implemented using Imperas SlipStreamer API (binary interception), enabled support for real time power management techniques such as DVFS within the virtual platform environment
 3) Fault injection: The virtual platform provides visibility and observability, so faults can be injected anywhere in the platform, e.g. memory, processor registers, … Fault injection is implemented by an external library, so fault generation can be controlled
Agenda

• Safety and security in embedded systems
• SAFEPOWER architecture
• Virtual platform environment
• SAFEPOWER platform: Xilinx Zynq 7000
• Virtual platform challenges and solutions
• Results

• Summary
Summary

• Virtual platform was used for development of mixed-criticality system
• Several challenges were encountered and overcome:
 • Power modeling for power monitoring and management
 • Fault injection testing
 • Support of time-triggered system
• Virtual platform environment had equivalent results to hardware platform, with a number of advantages due to the controllability, observability, determinism and ease of automation of the software simulation
Thank you

Larry Lapides
LarryL@imperas.com