
© 2021 Imperas Software Limited www.OVPworld.org Page 1 of 24

OVP Guide to Using Processor Models

Imperas Software Limited
Imperas Buildings, North Weston,

Thame, Oxfordshire, OX9 2HA, UK
docs@imperas.com

Author: Imperas Software Limited
Version: 0.6
Filename: OVP_Guide_To_Using_Processor_Models.doc
Project: OVP Guide to Using Processor Models
Last Saved: Friday, 26 February 2021

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 2 of 24

Copyright Notice
Copyright © 2021 Imperas Software Limited All rights reserved. This software and
documentation contain information that is the property of Imperas Software Limited. The
software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Imperas Software Limited, or as expressly provided by the license
agreement.

Right to Copy Documentation
The license agreement with Imperas permits licensee to make copies of the
documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’s responsibility to determine the applicable
regulations and to comply with them.

Disclaimer
IMPERAS SOFTWARE LIMITED., AND ITS LICENSORS MAKE NO WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 3 of 24

Table of Contents

1 Preface.. 5

1.1 Notation... 5
1.2 Glossary .. 5
1.3 Recommended Reading .. 7

2 References.. 8
2.1 Open Virtual Platforms API Acronyms.. 8

3 Introduction.. 9
3.1 SystemC TLM2.0.. 9
3.2 C platforms, OVPsim, and CpuManager .. 9

4 Processor Model Overview.. 10
4.1 What is a processor model? .. 10

4.1.1 How a processor model works.. 10
4.2 What is modeled and what isn't?... 10

4.2.1 Instruction Accurate.. 10
4.2.2 Pipeline and closely coupled Cache.. 10
4.2.3 Cache Ratio Monitor... 11
4.2.4 Speed... 11
4.2.5 Virtual Memory .. 11
4.2.6 Standalone & L2, L3, etc Cache models... 11
4.2.7 Time .. 11
4.2.8 JTAG... 11

4.3 How is a model used? ... 12
4.4 Can a platform have multiple processors? .. 12
4.5 How are multiprocessor systems simulated? .. 12

4.5.1 How many instructions per quantum? .. 12
4.6 Do OVP models work in transaction-based platforms?.................................... 12

4.6.1 Real and Artifact Transactions.. 12
4.7 How are different bus architectures represented?... 13

5 Instancing OVP processor models in a platform ... 14
5.1 SystemC TLM2.0 platforms ... 14

5.1.1 Memory and SystemC TLM2.0 DMI ... 14
5.2 C platforms.. 14

6 Processor instance configuration ... 15
6.1 Variant... 15
6.2 Endian ... 15
6.3 mips (clock frequency) ... 15
6.4 Optional Features .. 15

7 Connecting processors to platform components .. 16
7.1 Bus Connections ... 16
7.2 Interrupts ... 16

7.2.1 Vectored interrupts.. 16
7.3 Processor Reset ... 16

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 4 of 24

7.3.1 Implicit reset ... 16
7.3.2 Reset will override the program entry point ... 16
7.3.3 Instruction accounting... 17

8 Processor Debug .. 18
8.1 RSP Integration... 18

8.1.1 Use model ... 18
8.1.2 Enabling the debugger port ... 19

8.2 API integration.. 19
8.2.1 Use model ... 20
8.2.2 Using OVPsim in a threaded program.. 20

8.3 Debugging multicore processors... 20
9 Tracing, Interception, Semihosting, and Analysis ... 21

9.1 Instruction Tracing.. 21
9.2 Binary interception and Semihosting.. 21
9.3 Verification, Analysis and Profiling ... 21
9.4 Summary of features ... 21

10 Model commands... 22
11 Available Imperas OVP Fast Processor Models.. 23
12 Model Specific Documentation ... 24

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 5 of 24

1 Preface
This document describes the Imperas OVP Fast Processor Models and how they are used.
It gives an overview of using a processor model in different simulation environments. It
refers to other documents needed for more detailed information.

Part of this document lists the different processor models available and their
configuration options and any specific usage constraints and requirements.

1.1 Notation
Code Example code

1.2 Glossary
Attribute: The term attribute has been replaced by parameter in the context of a

processor model. It is a name/value pair associated with a processor
instance. The value can be a string, integer or floating point number.

Bare Metal: A platform with no operating system, often just a single processor with a

fully populated memory space. Often the platform is used with a basic
semihost library and referred to as a user-mode simulation.

Binary interception: The monitoring by the simulator of the execution of application code

by a processor model so that the simulator can change its behavior without
having to modify the application code. Binary interception is used for
Semihosting, tracing and analysis.

CpuManager: Imperas Professional Product simulator that implements all of the OVP

APIs.

Core: Autonomous execution unit, usually defined by having its own program

counter (PC).

Cycle Accurate Model: A model that represents the implementation details of a processor

including its pipelines, and cycle by cycle state changes. (as opposed to
Instruction Accurate)

Debug target: Execution unit that is recognized by a debugger. Usually equivalent to a

Core, but might not be.

DMI: Direct Memory Interface. (In TLM2.0) circumvention of the transaction

mechanism, giving a processor model direct access to a memory model.
When enabled this can speed up a simulation by orders of magnitude, but
loses the ability to observe or analyze bus transactions.

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 6 of 24

Instance: Copy of the part of a model that holds its state. OVP simulators can load a
model once, then simultaneously simulate several instances without
interference between them.

Instruction Accurate Model: A model that represents the functionality of a processors

instruction execution without regard to artifacts like pipelines. Only
instruction boundaries are visible. (as opposed to Cycle Accurate).

MIPS: Million Instructions Per Second. A measure of processor speed (not to be

confused with MIPS Technologies, Inc, a processor IP vendor).

Model: Software simulation model of a processor or processor family.

Multicore: A processor containing more than one core.

OVPsim: Simulator that implements a subset of the OVP APIs, available from the

OVPworld website.

Platform: Software model of a complete circuit comprising processors, memory,

buses and peripherals. The simulation is accurate enough for software
development but not for accurately predicting system performance..

Processor: Indivisible device provided by a silicon vendor or licensor. Can be

supplied as RTL, layout or finished silicon.

Quantum: (In multiprocessor simulation) A time period in which each processor in

turn simulates a certain number of instructions. Simulated time is
advanced only at the end of a quantum, so this is limit of timing accuracy
of the simulation.

 The quantum is usually fixed for the duration of a simulation, but can be
changed (at the start of a new quantum).

Semihosting: Interception by the simulator of calls in the application to I/O functions

and the passing of the calls to the host operating system.

SlipStreamer™: Imperas marketing name for binary interception.

Sparse memory: Simulated memory is created by the OVP simulator as it is used; unused

regions are not allocated. Therefore the simulator can create a model of a
memory larger than that of the host computer.

TLB: Translation Look-aside Buffer. Part of a processor's VM controller.

Variant: A configuration setting of a model to represent a specific vendor

processor, for example to configure the generic MIPS model to be MIPS
24KEc.

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 7 of 24

Virtual Platform: as Platform.

VM: Virtual Memory or Virtual Memory controller. Hardware that allows a

processor to simultaneously execute several programs without interfering
with each other.

1.3 Recommended Reading
Imperas simulation technology is based on just-in-time (JIT) compiler technology. The
following book provides a good introduction to the concepts involved:

Virtual Machines, by James E. Smith, Ravi Nair
ISBN 1-55860-910-5
Publisher: Morgan Kaufmann/Elsevier

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 8 of 24

2 References
Subject API Document
Processor modeling VMI OVP Processor Modeling Guide

OVP VMI Morph Time Function Reference
OVP VMI Run Time Function Reference

Platform construction
Debugger integration

OP

iGen Platform and Module Creation User Guide
Writing Platforms and Modules in C User Guide
Simulation Control of Platforms and Modules User Guide
Advanced Simulation Control of Platforms and Modules User
Guide

Peripheral modeling PPM
BHM

OVP Peripheral Modeling Guide
OVP BHM PPM Function Reference

TLM2.0 integration OVPsim using OVP Models in SystemC TLM2.0
GDB Integration OVPsim Debugging Applications with GDB

OVPsim Debugging Applications with Eclipse
Cache modeling VMI OVP VMI Memory Model Component Function Reference
Multicore Debugger Imperas Debugger User Guide

 Imperas VAP Tools User Guide
Imperas Control File User Guide

Verification, Analysis
and Profiling (VAP)

VMI Imperas Binary Intercept Technology User Guide

2.1 Open Virtual Platforms API Acronyms
VMI Virtual Machine Interface (for processors)
OP OVP Platforms (for simulation control and platforms)
BHM BeHavioral Modeling (for peripherals)
PPM Peripheral Programming Modeling (for peripherals)
VAP Verification Analysis Profiling

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 9 of 24

3 Introduction
The OVP simulation technology from Open Virtual Platforms (OVP) and Imperas
Software Limited enables very high performance simulation, debug and analysis of
virtual platforms containing multiple processor and peripheral models. The OVP
technology is extensible, provides the ability to create new models of processors and
other platform components by writing C/C++ code that uses application programming
interfaces (APIs) and libraries supplied as part of OVP.

Processor models developed using this technology can be used with both the Imperas
Professional Tools simulation products and the OVPsim simulator.

3.1 SystemC TLM2.0
If you are a SystemC user, you should use this document in conjunction with the
document ‘OVPsim using OVP Models in SystemC TLM2.0’, and follow the SystemC
references.

3.2 C platforms, OVPsim, and CpuManager
If you are not a SystemC user, you will construct your platform using the C API and
should use this document in conjunction with the documents referenced above.

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 10 of 24

4 Processor Model Overview

4.1 What is a processor model?
An OVP processor model is a shared object file (.so on Linux, .dll on Windows) and an
optional C++ header for use with SystemC. The shared object can be loaded by an OVP
compliant simulator.

The OVP processor models use the VMI API to convert the target processor code into
native code for efficient simulation.

The Imperas OVP Fast Processor Models are written in C and are compiled with GCC.
Both the binaries and source trees are provided as part of standard OVP installations.

The models are used directly as shared objects.

4.1.1 How a processor model works
The OVP model uses the VMI API to:

a) build an instruction decoder to decode the instruction set of the target processor;
b) provide disassembly output;
c) generate native code for simulation, without explicit reference to the native

instruction set.
The model is only concerned with code translation; the simulator implements the just-in-
time translation algorithm, memory allocation, re-translation of modified code and other
features required for simulation.
For details of the VMI API, see references in section 2.

It is important to note that the simulator is very separate from the model - the model is
written in C/C++ and the simulator is required to load and execute that model.

4.2 What is modeled and what isn't?
4.2.1 Instruction Accurate
An OVP processor model is instruction accurate; the outcome of a simulated program
executing in a single thread will correctly match the hardware being modeled.

4.2.2 Pipeline and closely coupled Cache
The processor pipeline is not modeled so bus accesses will not always occur in the correct
sequence. For this reason, OVP users do not generally model and use caches (though
OVP has all the capabilities to model both closely coupled L1, and shared L2, L3, …
caches).

Some OVP processor models do have models of L1 caches.

Cache-control registers are present, so software that controls a cache will execute
correctly.

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 11 of 24

4.2.3 Cache Ratio Monitor
Some OVP processor models have a cache ratio monitor (CRM) which models a cache in
sufficient detail to determine the approximate ratio of hits to misses. A CRM cannot be
used to check cache coherency.

4.2.4 Speed
An OVP model does not accurately model processor speed – you need cycle accurate and
MHz clocking to do this. OVP models have ‘mips’ ratings to specify the number of
instructions to be executed in a measure of elapsed real time. Simulated time can be used
to compare software implementations, but will not give an accurate indication of speed in
the real hardware.

4.2.5 Virtual Memory
The model can use the VMI API to model Virtual Memory (VM) as simple fixed
mappings or as complex hardware such as used in the cache modeling reference of
Translation Lookaside Buffer (TLB) hardware; including exceptions and co-processors
required to make a comprehensive model of a modern virtual memory equipped
processor.

4.2.6 Standalone & L2, L3, etc Cache models
Stand-alone cache models are available in OVPsim. They can model any cache
algorithm, but are slow and cannot be controlled by registers built into a processor. To
write cache models see the cache modeling reference of section 2.

4.2.7 Time
OVP simulators have a concept of time. Simulation time is advanced at the end of each
simulation quantum (which is global across the simulator), so that by choosing the length
of time simulated in each quantum and the number of instructions executed by each
processor in a quantum (by the MIPS rating), each processor is given a number of
instructions to execute.

To set the MIPS rating of a model and the quantum of the simulator refer to the API
reference in section 2.

Peripheral models can cause events to happen after a specified delay, accurate to a
microsecond. However, it should be noted that time does not normally advance during a
quantum, so peripheral registers that return time-related data might not give accurate
results.

4.2.8 JTAG
OVP does not implement JTAG or include JTAG functionality in its models.

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 12 of 24

4.3 How is a model used?
A model cannot be used directly; it must be loaded by a simulator, e.g. OVPsim. The
simulator runs the model together with any other models, either automatically, or under
control of the API function calls.

4.4 Can a platform have multiple processors?
Yes.

An OVP simulator can load many instances of identical or different processor models,
using separate, partly or fully shared memory schemes.

4.5 How are multiprocessor systems simulated?
OVP processors in multiprocessor platforms do not execute simultaneously; for
efficiency each processor advances a certain number of instructions in turn. Increasing
the number of instructions run on one processor in one turn (quantum) will reduce the
time spent by the simulator switching context, so will improve simulation speed.
However, it will also increase the chance that interactions between processors will be
inaccurate with respect to the timing, especially if they communicate through shared
memory. This mechanism is used in C, and C++, and SystemC TLM.0 platforms.

4.5.1 How many instructions per quantum?
The default behavior of the simulator is to run 100,000 instructions on each processor in
turn. Performance is affected by the application and platform, but increasing the number
of instructions beyond 100,000 has no measurable effect. The quantum can be reduced
for better accuracy but below 1000 performance will suffer. It is possible to change the
quantum size during a simulation, but only at the end of a quantum.

4.6 Do OVP models work in transaction-based
platforms?

OVP models work successfully in transaction based simulation; SystemC TLM2.0 is an
example of this. OVP models have a SystemC TLM2.0 interface, which allows them to
be directly instantiated in a SystemC TLM2.0 platform. See references to SystemC
TLM2.0 platforms in section 2.

4.6.1 Real and Artifact Transactions
An OVP processor model uses dynamic code translation. One of the few side effects of
this technology is that the first time a block of code is executed, the simulator reads the
program as it is translated into native code, prior to simulating execution of the code in
the normal way. Each program read generates a bus transaction that would not be present
in real hardware. Transaction based simulators allow this type of read to be marked as a
simulation artifact or debug transaction so it can be ignored by parts of the model which
might be disturbed. A debug transaction must carry the correct data so that the
instructions can be understood, but the transaction should not be included in performance
or cache analysis for example.

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 13 of 24

4.7 How are different bus architectures represented?
OVP allows the modeling of complex addressing systems and can correctly represent
shared memory, aliasing and missing regions. Bus transactions can represent accesses of
different numbers of bytes so that complex peripherals behave correctly. However OVP
simulators are not cycle-accurate so do not simulate the details of a system's underlying
bus architecture. For example, changing a bus implementation from AMBA to PCI will
not normally show any differences in system performance.

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 14 of 24

5 Instancing OVP processor models in a platform
Imperas OVP Fast Processor Models can be instanced in many types of platforms.

5.1 SystemC TLM2.0 platforms
Each Imperas OVP Fast Processor Model is shipped with a TLM2.0 interface. Model
instances should be added to the platform code, the interface header files included in the
TLM2.0 platform, and the platform recompiled including the OVP headers and library.
The processor models will then be automatically loaded at run-time. For details of using
OVP models in SystemC see references in section 2.

5.1.1 Memory and SystemC TLM2.0 DMI
OVP models implement the SystemC TLM2.0 Direct Memory Interface (DMI). This
allows a processor to negotiate a direct connection to a memory, subsequently
circumventing the TLM2.0 bus transaction mechanism. The effect is that only the very
first TLM2.0 bus transaction will occur - subsequent accesses will be invisible to
TLM2.0, giving a very significant simulation speed-up. This feature is turned on by
default, but can be disabled. See the reference to TLM2.0 in section 2.

5.2 C platforms
Instancing an OVP Fast Processor Model in a C platform is covered in detail in the
platform construction document referenced in section 2, “References”.

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 15 of 24

6 Processor instance configuration
OVP processor models have many features which are controlled from the simulation
environment by parameters. Some parameter names are standard to all processor models;
some are specific to a particular processor. A parameter is a name/value pair. The name
describes what the parameter controls, the value can be a string, integer or floating point
number. Each model instance has its own parameters which must be set by the simulated
platform and are then read by the model. See the model specific information documents
for lists of parameters defined by each processor model.

parameter name meaning type values
variant select the model variant string model-specific
endian processor endian string big, little
mips Speed (106 instructions per sec) real positive number

Table 1 Standard Processor Parameters

6.1 Variant
An OVP processor shared object usually includes model configurations of more than one
core from the same family.

For example a single ARM model could be configured to be one of 20 ‘variants’, e.g. an
ARM7TDMI, ARM926EJ-S or ARM Cortex-A9UP, etc.

The different configurations are referred to as variants and can be selected by setting the
variant parameter on the model instance.

6.2 Endian
Processors that can be configured big or little endian read their endian parameter. Some
processor models can automatically set their endian to that specified by the application
program being loaded.

6.3 mips (clock frequency)
The parameter mips is used to set the instruction frequency of a particular processor
instance. The specified parameter value sets the number of million instructions executed
per second. OVP processor models have a default speed of 100 MIPS.

6.4 Optional Features
Processors are supplied by their vendors with optional features; e.g. DSP instruction sets,
floating point unit or TLB, etc. The OVP models have similar options which are selected
by the models parameters. See the Model Specific Information documents for lists of
parameters defined by each processor model.

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 16 of 24

7 Connecting processors to platform components
When a processor has been instanced and configured, it must be connected to other
components in the platform. Components have bus ports which are connected together
with buses and net ports connected using nets.

Most processor models have the following ports:

port name port type function
INSTRUCTION bus master fetch instructions for execution
DATA bus master read and write data
reset net input processor reset
intXXX net input hardware interrupt(s)

7.1 Bus Connections
Most processor models have separate instruction and data bus connections. If the silicon
implementation has a single bus connection, instruction and data can both be connected
to the same bus. Note that multiplexing connections by using multiple ports to common
buses and nets has no effect on behavior or simulation performance.

7.2 Interrupts
A processor's external interrupt inputs modeled as nets in OVP. They are generally edge
triggered and must be written with their inactive value followed by their active value, to
produce and interrupt. Refer to vendor's data to determine if an input is level or edge
sensitive and if the sense is positive or negative.

7.2.1 Vectored interrupts

Unlike in real hardware, an OVP net can carry an integer value. Some processor models
use this value to encode the interrupt priority or level.

7.3 Processor Reset
Most OVP processor models include a reset pin. Refer to vendor's data to determine the
sense of the reset input.

7.3.1 Implicit reset
A processor model performs an implicit reset at time zero, so there is no need to connect
or drive the reset pin. However, if required, the processor can be forced into reset by
writing a '1' to the reset, and held in reset until a '0' is written.

7.3.2 Reset will override the program entry point
After an explicit reset the processor will start code execution from the reset vector and
will not use the program entry point provided in the application program.

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 17 of 24

7.3.3 Instruction accounting
When in the reset state the processor is idle. Time still moves forward and as such the
instruction counts increase within each simulation quantum.

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 18 of 24

8 Processor Debug
It is necessary to be able to use industry-standard debug tools to debug application code
that is running on the processors modeled in a virtual platform. OVP processor models
can interface to a debugger in two ways: by RSP socket or through an API.

8.1 RSP Integration
OVPsim and the Imperas CpuManager have a built-in debug interface which uses the
GNU GDB Remote Serial Protocol (RSP).

Note that this is in the simulator and not the processor model, meaning that all OVP
processor models can be debugged using GDB (assuming that a GDB is available for that
specific processor).

Depending on the capabilities of the specific simulator, a debugger or debuggers can be
connected to one or more of the processor model instances present in a platform. The
Imperas professional tools include a multicore debugger which uses an enhanced version
of RSP to allow simultaneous debug of all the cores in a platform. For details see the
references in section 2.

Simulator Supported connection OVPsim CpuManager
Single GDB yes yes
Multiple GDBs no yes
Multicore debugger no yes

8.1.1 Use model
An executable is required, containing the platform definition (using the C API) and the
OVP simulator. This executable can be used for debug or non-debug execution; the
debug interface is enabled by a call to the C API or by using a control file. After starting,
the executable waits for a socket connection. A debugger (in a separate process) connects
to this socket. The debugger then communicates with and controls the simulator using the
bidirectional socket connection.

8.1.1.1 Port number selection
Each initial debugger connection is made via a single port number (the connection is then
handed off to a port allocated by the host operating system). The initial port number can
be set, or if the value is zero, it will be chosen by the operating system.

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 19 of 24

8.1.1.2 Selecting the debug target

Single processor debug (OVPsim) Single target processor must be specified in

platform
Multiple GDB connections
(CpuManager)

Processors connected to GDBs in order of
processor construction

Multiprocessor Debug (Imperas
Professional Tools)

All processors can be debugged simultaneously.

8.1.2 Enabling the debugger port

8.1.2.1 Using OVPsim and C API
Modify the call to opRootModuleNew:

To open a terminal and connect to the GDB debugger

mi = opRootModuleNew(0, 0, OP_PARAMS(OP_PARAM_BOOL_SET(OP_FP_GDBCONSOLE, 1)));

To open a port to which a GDB debugger can be connected. Using 0 allows the simulator
to open the next available port or a specific port number can be provided.

mi = opRootModuleNew(0, 0, OP_PARAMS(OP_PARAM_UNS32_SET(OP_FP_REMOTEDEBUGPORT,
0)));

8.1.2.2 Using CpuManager and a control file
Add this to the control file:

-gdbconsole

or

-port <port number>

8.1.2.3 Using the Imperas Simulator’s Command line

-gdbconsole

or

-port <port number>

8.2 API integration
Users wishing to integrate a third-party debugger or have their tools/programs control the
models and/or simulation must use the C API. This allows complete control of the
processors in a platform and provides all the required features including:

 interrogation of processors and their configuration
 run
 stop (interrupt simulation)
 single-step

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 20 of 24

 disassembly
 add/delete breakpoints
 add/delete watchpoints
 read/write registers
 read/write memory
 request callback on change of simulator state

8.2.1 Use model
The C API can be used both to construct the platform and separately, to debug it. For
instance, a platform definition might be supplied as a shared object which is selected and
loaded at run-time into a system which includes OVPsim and a debugger.

8.2.2 Using OVPsim in a threaded program
OVP models can be run in ‘quick-threads’ (SystemC uses this mechanism) or in a single
POSIX thread or process. The C API simulation functions opProcessorSimulate and
opRootModuleSimulate are not designed to be thread safe: do not make multiple calls to
these functions from asynchronous POSIX threads.

It is possible to run the simulator in a separate thread from the debugger, provided certain
conditions are met. This allows a certain level of responsiveness from the debugger
during simulation. Refer to section 2 for details of debugger integration using the C API
interface.

8.3 Debugging multicore processors
A platform using one single core processor requires one debugger. If a platform uses a
multicore processor, each core will appear as a debug target (note that some silicon
vendors allow the user to choose the number of cores in a processor). The C API provides
functions to traverse the processor hierarchy, identifying each core and allows selecting
one or more as debug targets.

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 21 of 24

9 Tracing, Interception, Semihosting, and Analysis
The same software program compiled to a binary that would be used in the silicon may
be used in the OVP simulation. Symbolic and debug information must be available to
allow interception, semihosting and analysis tools to work correctly.

9.1 Instruction Tracing
To help the user debug an application the OVP simulator can produce a trace of each
instruction as it is executed. This is a feature of the simulator so does not have to be
included in each processor model. Tracing can be turned on or off per processor model
instance at any time before or during simulation. Tracing information includes address
being executed, disassembly of the instruction and (in CpuManager) reference to code
labels found close to addresses reference by the instructions.

Note that tracing is produced as each model is executed, so the effects of the scheduling
algorithm will be seen in the trace.

9.2 Binary interception and Semihosting
Application code can be executed on a Bare Metal platform. In this situation it is useful
for the application to read input data from files and write output data to files or a terminal
on the host system. The application can, for example, be linked with a standard LibC and
use the input and output functions available in LibC. The simulator then intercepts calls
to low-level I/O functions in LibC, passing the requests to the host operating system. This
is referred to as semihosting. All Imperas OVP Fast Processor Models have semihost
libraries to implement a useful subset of the C language library. Since the C++ compiler
uses the C library for many of its functions, the basic C++ I/O library can also be used.

9.3 Verification, Analysis and Profiling
CpuManager can use additional tools that help analyze the application code as it
executes. See the reference to V.A.P. in section 2.

9.4 Summary of features
Feature OVPsim CpuManager
Address tracing y y
Disassembly y y
Code label tracing n y
Semihosting y (one library only) y (multiple libraries)
VAP tools n y

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 22 of 24

10 Model commands
Commands are implemented by a particular model and have no standard names or
formats. Please refer to the model specific information documents.

Commands are used by debug and analysis tools to access the internal state of the model
without using the hardware interfaces, in the same way that a hardware debugger might
use JTAG. A command can send text to the simulator standard output stream or return a
value to the API function.

Commands can be issued from a suitably equipped debugger, from a control file (in
CpuManager), from a simulator command-line (in the Imperas Simulator), or by using
the C API (all simulators).

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 23 of 24

11 Available Imperas OVP Fast Processor Models
The current OVP processor library as included in the OVPworld distributions contains:

 arc
 arm (classic, Cortex-A, and Cortex-R profiles)
 armm (Cortex-M Profile)
 mips32
 mips64
 v850
 or1k
 powerpc32
 m16c
 r8c
 microblaze
 Nios II
 RISC-V RV32, RV64, Andes, lowRISC, Microsemi, OpenHW and SiFive

Processor models are available from other sources:

 ms1750a
 sparc
 vinchip

OVP Guide to Using Processor Models

© 2021 Imperas Software Limited.www.OVPworld.org Page 24 of 24

12 Model Specific Documentation
Please read the companion documents that describe the features, parameters etc of the
specific models and model variants.

	1 Preface
	1.1 Notation
	1.2 Glossary
	1.3 Recommended Reading

	2 References
	2.1 Open Virtual Platforms API Acronyms

	3 Introduction
	3.1 SystemC TLM2.0
	3.2 C platforms, OVPsim, and CpuManager

	4 Processor Model Overview
	4.1 What is a processor model?
	4.1.1 How a processor model works

	4.2 What is modeled and what isn't?
	4.2.1 Instruction Accurate
	4.2.2 Pipeline and closely coupled Cache
	4.2.3 Cache Ratio Monitor
	4.2.4 Speed
	4.2.5 Virtual Memory
	4.2.6 Standalone & L2, L3, etc Cache models
	4.2.7 Time
	4.2.8 JTAG

	4.3 How is a model used?
	4.4 Can a platform have multiple processors?
	4.5 How are multiprocessor systems simulated?
	4.5.1 How many instructions per quantum?

	4.6 Do OVP models work in transaction-based platforms?
	4.6.1 Real and Artifact Transactions

	4.7 How are different bus architectures represented?

	5 Instancing OVP processor models in a platform
	5.1 SystemC TLM2.0 platforms
	5.1.1 Memory and SystemC TLM2.0 DMI

	5.2 C platforms

	6 Processor instance configuration
	6.1 Variant
	6.2 Endian
	6.3 mips (clock frequency)
	6.4 Optional Features

	7 Connecting processors to platform components
	7.1 Bus Connections
	7.2 Interrupts
	7.2.1 Vectored interrupts

	7.3 Processor Reset
	7.3.1 Implicit reset
	7.3.2 Reset will override the program entry point
	7.3.3 Instruction accounting

	8 Processor Debug
	8.1 RSP Integration
	8.1.1 Use model
	8.1.1.1 Port number selection
	8.1.1.2 Selecting the debug target

	8.1.2 Enabling the debugger port
	8.1.2.1 Using OVPsim and C API
	8.1.2.2 Using CpuManager and a control file

	8.2 API integration
	8.2.1 Use model
	8.2.2 Using OVPsim in a threaded program

	8.3 Debugging multicore processors

	9 Tracing, Interception, Semihosting, and Analysis
	9.1 Instruction Tracing
	9.2 Binary interception and Semihosting
	9.3 Verification, Analysis and Profiling
	9.4 Summary of features

	10 Model commands
	11 Available Imperas OVP Fast Processor Models
	12 Model Specific Documentation

